Понятие обратной функции примеры. Взаимно обратные функции, основные определения, свойства, графики

Что такое обратная функция? Как найти функцию, обратную данной?

Определение .

Пусть функция y=f(x) определена на множестве D, а E — множество её значений. Обратная функция по отношению к функции y=f(x) — это функция x=g(y), которая определена на множестве E и каждому y∈E ставит в соответствие такое значение x∈D, что f(x)=y.

Таким образом, область определения функции y=f(x) является областью значений обратной к ней функции, а область значений y=f(x) — областью определения обратной функции.

Чтобы найти функцию, обратную данной функции y=f(x), надо :

1) В формулу функции вместо y подставить x, вместо x — y:

2) Из полученного равенства выразить y через x:

Найти функцию, обратную функции y=2x-6.

Функции y=2x-6 и y=0,5x+3 являются взаимно обратными.

Графики прямой и обратной функций симметричны относительно прямой y=x (биссектрисы I и III координатных четвертей).

y=2x-6 и y=0,5x+3 — . Графиком линейной функции является . Для построения прямой берём две точки.

Однозначно выразить y через x можно в том случае, когда уравнение x=f(y) имеет единственное решение. Это можно сделать в том случае, если каждое своё значение функция y=f(x) принимает в единственной точке её области определения (такая функция называется обратимой ).

Теорема (необходимое и достаточное условие обратимости функции)

Если функция y=f(x) определена и непрерывна на числовом промежутке, то для обратимости функции необходимо и достаточно, чтобы f(x) была строго монотонна.

Причем, если y=f(x) возрастает на промежутке, то и обратная к ней функция также возрастает на этом промежутке; если y=f(x) убывает, то и обратная функция убывает.

Если условие обратимости не выполнено на всей области определения, можно выделить промежуток, где функция только возрастает либо только убывает, и на этом промежутке найти функцию, обратную данной.

Классический пример — . На промежутке $

Так как эта функция убывает и непрерывна на промежутке $X$, то на промежутке $Y=$, которая также убывает и непрерывна на этом промежутке (теорема 1).

Вычислим $x$:

\ \

Выбираем подходящие $x$:

Ответ: обратная функция $y=-\sqrt{x}$.

Задачи на нахождение обратных функций

В этой части рассмотрим обратные функции для некоторых элементарных функций. Задачи будем решать по схеме, данной выше.

Пример 2

Найти обратную функцию для функции $y=x+4$

    Найдем $x$ из уравнения $y=x+4$:

Пример 3

Найти обратную функцию для функции $y=x^3$

Решение.

Так как функция возрастает и непрерывна на всей области определения, то, по теореме 1, она имеет на ней обратную непрерывную и возрастающую функцию.

    Найдем $x$ из уравнения $y=x^3$:

    Находим подходящие значения $x$

    Значение в нашем случае подходит (так как область определения -- все числа)

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 4

Найти обратную функцию для функции $y=cosx$ на промежутке $$

Решение.

Рассмотрим на множестве $X=\left$ функцию $y=cosx$. Она непрерывна и убывает на множестве $X$ и отображает множество $X=\left$ на множество $Y=[-1,1]$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=cosx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=[-1,1]$ и отображает множество $[-1,1]$ на множество $\left$.

    Найдем $x$ из уравнения $y=cosx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

Пример 5

Найти обратную функцию для функции $y=tgx$ на промежутке $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$.

Решение.

Рассмотрим на множестве $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ функцию $y=tgx$. Она непрерывна и возрастает на множестве $X$ и отображает множество $X=\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$ на множество $Y=R$, поэтому по теореме о существовании обратной непрерывной монотонной функции у функции $y=tgx$ в множестве $Y$ существует обратная функция, которая также непрерывна и возрастает в множестве $Y=R$ и отображает множество $R$ на множество $\left(-\frac{\pi }{2},\frac{\pi }{2}\right)$

    Найдем $x$ из уравнения $y=tgx$:

    Находим подходящие значения $x$

    Переопределим переменные, получим, что обратная функция имеет вид

    Мы уже сталкивались с задачей, когда по заданной функции f и заданному значению её аргумента необходимо было вычислить значение функции в этой точке. Но иногда приходится сталкиваться с обратной задачей: найти по известной функции f и её некоторому значению y значение аргумента, в котором функция принимает данное значение y.

    Функция, которая, принимает каждое свое значение в единственной точке своей области определения, называется обратимой функцией. Например, линейная функция будет являться обратимой функцией . А квадратичная функция или функция синус не будет являться обратимыми функциями. Так как одно и то же значение функция может принимать при различных аргументах.

    Обратная функция

    Положим, что f есть некоторая произвольная обратимая функция. Каждому числу из области её значений y0, соответствует лишь одно число из области определения x0, такое что f(x0) = y0.

    Если теперь мы каждому значению х0 поставим в соответствие значение y0, то получим уже новую функцию. Например, для линейной функции f(x) = k * x + b функция g(x) = (x - b)/k будет являться обратной.

    Если некоторая функция g в каждой точке х области значений обратимой функции f принимает значение у такое, что f(y) = x, то говорят, что функция g - есть обратная функция к f.

    Если у нас будет задан график некоторой обратимой функции f, то для того чтобы построить график обратной функции, можно пользоваться следующим утверждением: график функции f и обратной к ней функции g будут симметричны относительно прямой, заданной уравнением y = x.

    Если функция g является обратной к функции f, то функция g будет являться обратимой функцией. А функция f будет обратной к функции g. Обычно говорят, что две функции f и g взаимно обратные друг к другу.

    На следующем рисунке представлены графики функций f и g взаимно обратных друг к другу.

    Выведем следующую теорему: если функция f возрастает (или убывает) на некотором промежутке A, то она обратима. Обратная к а функция g, определенная в области значений функции f, также является возрастающей (или соответственно убывающей) функцией. Данная теорема называется теоремой об обратной функции .

    Допустим, что у нас есть некая функция y = f (x) , которая является строго монотонной (убывающей или возрастающей) и непрерывной на области определения x ∈ a ; b ; область ее значений y ∈ c ; d , а на интервале c ; d при этом у нас будет определена функция x = g (y) с областью значений a ; b . Вторая функция также будет непрерывной и строго монотонной. По отношению к y = f (x) она будет обратной функцией. То есть мы можем говорить об обратной функции x = g (y) тогда, когда y = f (x) на заданном интервале будет либо убывать, либо возрастать.

    Две этих функции, f и g , будут взаимно обратными.

    Для чего вообще нам нужно понятие обратных функций?

    Это нужно нам для решения уравнений y = f (x) , которые записываются как раз с помощью этих выражений.

    Допустим, нам нужно найти решение уравнения cos (x) = 1 3 . Его решениями будут все точки: x = ± a rс c o s 1 3 + 2 π · k , k ∈ Z

    Обратными по отношению друг к другу будут, например, функции арккосинуса и косинуса.

    Разберем несколько задач на нахождение функций, обратных заданным.

    Пример 1

    Условие: какая функция будет обратной для y = 3 x + 2 ?

    Решение

    Область определений и область значений функции, заданной в условии, – это множество всех действительных чисел. Попробуем решить данное уравнение через x , то есть выразив x через y .

    Мы получим x = 1 3 y - 2 3 . Это и есть нужная нам обратная функция, но y здесь будет аргументом, а x - функцией. Переставим их, чтобы получить более привычную форму записи:

    Ответ: функция y = 1 3 x - 2 3 будет обратной для y = 3 x + 2 .

    Обе взаимно обратные функции можно отобразить на графике следующим образом:

    Мы видим симметричность обоих графиков относительно y = x . Эта прямая является биссектрисой первого и третьего квадрантов. Получилось доказательство одного из свойств взаимно обратных функций, о котором мы поговорим далее.

    Возьмем пример, в котором нужно найти логарифмическую функцию, обратную заданной показательной.

    Пример 2

    Условие: определите, какая функция будет обратной для y = 2 x .

    Решение

    Для заданной функции областью определения являются все действительные числа. Область значений лежит в интервале 0 ; + ∞ . Теперь нам нужно выразить x через y , то есть решить указанное уравнение через x . Мы получаем x = log 2 y . Переставим переменные и получим y = log 2 x .

    В итоге у нас вышли показательная и логарифмическая функции, которые будут взаимно обратными друг другу на всей области определения.

    Ответ: y = log 2 x .

    На графике обе функции будут выглядеть так:

    Основные свойства взаимно обратных функций

    В этом пункте мы перечислим основные свойства функций y = f (x) и x = g (y) , являющихся взаимно обратными.

    Определение 1

    1. Первое свойство мы уже вывели ранее: y = f (g (y)) и x = g (f (x)) .
    2. Второе свойство вытекает из первого: область определения y = f (x) будет совпадать с областью значений обратной функции x = g (y) , и наоборот.
    3. Графики функций, являющихся обратными, будут симметричными относительно y = x .
    4. Если y = f (x) является возрастающей, то и x = g (y) будет возрастать, а если y = f (x) убывает, то убывает и x = g (y) .

    Советуем внимательно отнестись к понятиям области определения и области значения функций и никогда их не путать. Допустим, что у нас есть две взаимно обратные функции y = f (x) = a x и x = g (y) = log a y . Согласно первому свойству, y = f (g (y)) = a log a y . Данное равенство будет верным только в случае положительных значений y , а для отрицательных логарифм не определен, поэтому не спешите записывать, что a log a y = y . Обязательно проверьте и добавьте, что это верно только при положительном y .

    А вот равенство x = f (g (x)) = log a a x = x будет верным при любых действительных значениях x .

    Не забывайте про этот момент, особенно если приходится работать с тригонометрическими и обратными тригонометрическими функциями. Так, a r c sin sin 7 π 3 ≠ 7 π 3 , потому что область значений арксинуса - π 2 ; π 2 и 7 π 3 в нее не входит. Верной будет запись

    a r c sin sin 7 π 3 = a r c sin sin 2 π + π 3 = = п о ф о р м у л е п р и в и д е н и я = a r c sin sin π 3 = π 3

    А вот sin a r c sin 1 3 = 1 3 – верное равенство, т.е. sin (a r c sin x) = x при x ∈ - 1 ; 1 и a r c sin (sin x) = x при x ∈ - π 2 ; π 2 . Всегда будьте внимательны с областью значений и областью определений обратных функций!

    • Основные взаимно обратные функции: степенные

    Если у нас есть степенная функция y = x a , то при x > 0 степенная функция x = y 1 a также будет обратной ей. Заменим буквы и получим соответственно y = x a и x = y 1 a .

    На графике они будут выглядеть следующим образом (случаи с положительным и отрицательным коэффициентом a):

    • Основные взаимно обратные функции: показательные и логарифмические

    Возьмем a,которое будет положительным числом, не равным 1 .

    Графики для функций с a > 1 и a < 1 будут выглядеть так:

    • Основные взаимно обратные функции: тригонометрические и обратные тригонометрические

    Если нам нужно построить график главной ветви синуса и арксинуса, он будет выглядеть следующим образом (показан выделенной светлой областью).