Вероятность случайной величины. Непрерывная случайная величина, функция распределения и плотность вероятности

Определение . Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Для непрерывной случайной величины вводится понятие функции распределения.

Определение. Функцией распределения вероятностей случайной величины Х называют функцию F(х), определяющую для каждого значения x вероятность того, что случайная величина Х примет значение меньшее x, то есть:

F(х) = P(X < x)

Часто вместо термина «функция распределения» используют термин «интегральная функция распределения».

Свойства функции распределения:

1. Значения функции распределения принадлежат отрезку:

0 ≤ F(х) ≤ 1.

2. Функция распределения есть неубывающая функция, то есть:

если x > x ,

то F(x ) ≥ F(x ).

3. Вероятность того, что случайная величина примет значение, заключенное в интервале – определенный интеграл
. ☻

Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

    Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле :

.

Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).


Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

  1. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

Определение . Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,... ,n с вероятностями

где 0<р

Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

Ряд распределения биномиального закона имеет вид:

Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения
выполнено, ибоесть не что иное, как сумма всех членов разложения бинома Ньютона:

Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

а ее дисперсия

Определение . Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m, ... (бесконечное, но счетное множество значений) с вероятностями
,

Ряд распределения закона Пуассона имеет вид:

Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения
выполнено, ибо сумма ряда.

На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Р m (λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

Теорема . Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

и

"

Непрерывная случайная величина может быть задана не только с помощью функции распределения. Введем понятие плотности вероятности непрерывной случайной величины.

Рассмотрим вероятность попадания непрерывной случайной величины на интервал [х , х + Δх ]. Вероятность такого события

P (х X х + Δх ) = F (х + Δх ) – F (х ),

т.е. равна приращению функции распределения F (х ) на этом участке. Тогда вероятность, приходящаяся на единицу длины, т.е. средняя плотность вероятности на участке от х до х + Δх , равна

Переходя к пределу Δх → 0, получим плотность вероятности в точке х :

представляющую производную функции распределения F (х ). Напомним, что для непрерывной случайной величины F (х ) – дифференцируемая функция.

Определение. Плотностью вероятности (плотностью распределения ) f (x ) непрерывной случайной величины Х называется производная ее функции распределения

f (x ) = F ′(x ). (4.8)

Про случайную величину Х говорят, что она имеет распределение с плотностью f (x ) на определенном участке оси абсцисс.

Плотность вероятности f (x ), как и функция распределения F (x ) является одной из форм закона распределения. Но в отличие от функции распределения она существует только для непрерывных случайных величин.

Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения . График плотности вероятности называется кривой распределения .

Пример 4.4. По данным примера 4.3 найти плотность вероятности случайной величины Х .

Решение. Будем находить плотность вероятности случайной величины как производную от ее функции распределения f (x ) = F "(x ).

Отметим свойства плотности вероятности непрерывной случайной величины.

1. Плотность вероятности – неотрицательная функция , т.е.

Геометрически вероятность попадания в интервал [α , β ,] равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [α , β ,] (рис.4.4).

Рис. 4.4 Рис. 4.5

3. Функция распределения непрерывной случайной величины может быть выражен через плотность вероятности по формуле :

Геометрически свойства 1 и 4 плотности вероятности означают, что ее график – кривая распределения – лежит не ниже оси абсцисс, а полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

Пример 4.5. Функция f (x ) задана в виде:

Найти: а) значение А ; б) выражение функции распределения F (х ); в) вероятность того, что случайная величина Х примет значение на отрезке .

Решение. а) Для того, чтобы f (x ) была плотностью вероятности некоторой случайной величины Х , она должна быть неотрицательна, следовательно, неотрицательным должно быть и значение А . С учетом свойства 4 находим:

, откуда А = .

б) Функцию распределения находим, используя свойство 3 :

Если x ≤ 0, то f (x ) = 0 и, следовательно, F (x ) = 0.

Если 0 < x ≤ 2, то f (x ) = х /2 и, следовательно,

Если х > 2, то f (x ) = 0 и, следовательно

в) Вероятность того, что случайная величина Х примет значение на отрезке находим, используя свойство 2 .

Плотность распределения вероятностей дискретной случайной величины

Пусть случайная величина принимает значения с вероятностями, . Тогда ее функция распределения вероятностей

где - функция единичного скачка. Определить плотность вероятности случайной величины по ее функции распределения можно с учетом равенства. Однако при этом возникают математические сложности, связанные с тем, что функция единичного скачка, входящая в (34.1), имеет разрыв первого рода при. Поэтому в точке не существует производная функции.

Для преодоления этой сложности вводится -функция. Функцию единичного скачка можно представить через -функцию следующим равенством:

Тогда формально производная

и плотность вероятности дискретной случайной величины определяется из соотношения (34.1) как производная функции:

Функция (34.4) обладает всеми свойствами плотности вероятности. Рассмотрим пример. Пусть дискретная случайная величина принимает значения с вероятностями, и пусть, . Тогда вероятность - того, что случайная величина примет значение из отрезка может быть вычислена, исходя из общих свойств плотности по формуле:

поскольку особая точка - функции, определяемая условием, находится внутри области интегрирования при, а при особая точка находится вне области интегрирования. Таким образом,

Для функции (34.4) также выполняется условие нормировки:

Отметим, что в математике запись вида (34.4) считается некорректной (неправильной), а запись (34.2) - корректной. Это обусловлено тем, что -функция при нулевом аргументе, и говорят, что не существует. С другой стороны, в (34.2) -функция содержится под интегралом. При этом правая часть (34.2) - конечная величина для любого, т.е. интеграл от -функции существует. Несмотря на это в физике, технике и других приложениях теории вероятностей часто используется представление плотности в виде (34.4), которое, во-первых, позволяет получать верные результаты, применяя свойства - функции, и во-вторых, имеет очевидную физическую интерпретацию.

Примеры плотностей и функций распределения вероятностей

35.1. Случайная величина называется равномерно распределенной на отрезке, если ее плотность распределения вероятностей

где - число, определяемое из условия нормировки:

Подстановка (35.1) в (35.2) приводит к равенству, решение которого относительно имеет вид: .

Функция распределения вероятностей равномерно распределенной случайной величины может быть найдена по формуле (33.5), определяющей через плотность:

На рис. 35.1 представлены графики функций и равномерно распределенной случайной величины.

Рис. 35.1. Графики функции и плотности распределения


равномерно распределенной случайной величины.

35.2. Случайная величина называется нормальной (или гауссовой), если ее плотность распределения вероятностей:

где, - числа, называемые параметрами функции. При функция принимает свое максимальное значение: . Параметр имеет смысл эффективной ширины. Кроме этой геометрической интерпретации параметры, имеют и вероятностную трактовку, которая будет рассмотрена в последующем.

Из (35.4) следует выражение для функции распределения вероятностей

где - функция Лапласа. На рис. 35.2 представлены графики функций и нормальной случайной величины. Для обозначения того, что случайная величина имеет нормальное распределение с параметрами и часто используется запись.


Рис. 35.2. Графики плотности и функции распределения

нормальной случайной величины.

35.3. Случайная величина имеет плотность распределения вероятностей Коши, если

Этой плотности соответствует функция распределения

35.4. Случайная величина называется распределенной по экспоненциальному закону, если ее плотность распределения вероятностей имеет вид:

Определим ее функцию распределения вероятностей. При из (35.8) следует. Если, то

35.5. Релеевское распределение вероятностей случайной величины определяется плотностью вида

Этой плотности соответствует функция распределения вероятностей при и равная

35.6. Рассмотрим примеры построения функции распределения и плотности дискретной случайной величины. Пусть случайная величина - это число успехов в последовательности из независимых испытаний. Тогда случайная величина принимает значения, с вероятностью, которая определяется формулой Бернулли:

где, - вероятности успеха и неуспеха в одном опыте. Таким образом, функция распределения вероятностей случайной величины имеет вид

где - функция единичного скачка. Отсюда плотность распределения:

где - дельта-функция.

Пусть дискретная физическая величина Х может принимать в результате опыта значения . Отношение числа опытов , в результате которых величина принимает значение , к общему числу проведенных опытов n называется частотой появления события . Частота является случайной величиной и меняется в зависимости от количества проведенных опытов. Однако при большом количестве опытов (в пределе n → ∞) она стабилизируется около некоторого значения , называемого вероятностью события (статистическое определение):

Очевидно, что сумма вероятностей реализации всех возможных значений случайной величины равна единице:

Дискретную случайную величину можно полностью задать вероятностным рядом, указав вероятность для каждого значения :

Законом распределения случайной величины называют любое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Вероятностный ряд является одним из видов законов распределения случайной величины. Распределение непрерывной случайной величины нельзя задать вероятностным рядом, поскольку число значений, которое она может принимать, так велико, что для большинства из них вероятность принять эти значения равна нулю. Поэтому для непрерывных физических величин изучается вероятность того, что в результате опыта значение случайной величины попадет в некоторый интервал. Удобно пользоваться вероятностью события , где - произвольное действительное число. Эта вероятность

является функцией от и называется функцией распределения (предельной функцией распределения, функцией распределения генеральной совокупности) случайной величины. В виде функции распределения можно задать распределение как непрерывной, так и дискретной случайной величины (рис. 2 и 3). F(x) является неубывающей функцией, т.е. если х1 ≤ х2, то F(х1) ≤ F(х2) (рис. 3).

Рис. 2. Функция распределения Рис. 3. Функция распределения

дискретной случайной величины. непрерывной случайной величины.

Ордината кривой , соответствующая точке , представляет собой вероятность того, что случайная величина при испытании окажется . Тогда вероятность того, что значения случайной величины будут лежать в интервале от , до , равна

Значения при предельных значениях аргумента равны , . Следует отметить, что функция распределения дискретной случайной величины всегда есть разрывная функция. Скачки происходят в точках, соответствующих возможным значениям этой величины, и равны вероятностям этих значений (рис. 2).