Чему равен момент импульса. Закон сохранения момента импульса

Момент импульса материальной точки относительно точки O определяется векторным произведением
, где - радиус-вектор, проведенный из точки O, - импульс материальной точки.
Момент импульса материальной точки относительно неподвижной оси равен проекции на эту ось вектора момента импульса, определенного относительно произвольной точки O данной оси. Значение момента импульса не зависит от положения точки O на оси z .

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных частиц, из которых состоит тело относительно оси. Учитывая, что , получим
.

Если сумма моментов сил, действующих на тело, вращающееся вокруг неподвижной оси, равна нулю, то момент импульса сохраняется (закон сохранения момента импульса) :
.

Производная момента импульса твердого тела по времени равна сумме моментов всех сил, действующих на тело:
.

Векторное произведение радиуса-вектора материальной точки на ее импульс: называют моментом импульса , этой точки относительно точки О (рис.5.4)

Вектор иногда называют также моментом количества движения материальной точки. Он направлен вдоль оси вращения перпендикулярно плоскости, проведенной через векторы и и образует с ними правую тройку векторов (при наблюдении из вершины вектора видно, что вращение по кратчайшему расстоянию от к происходит против часовой стрелки).

Векторную сумму моментов импульсов всех материальных точек системы называют моментом импульса (количества движения) системы относительно точки О:

Векторы и взаимно перпендикулярны и лежат в плоскости перпендикулярной оси вращения тела. Поэтому . Сучетом связи линейных и угловых величин

и направлен вдоль оси вращения тела в ту же сторону, что и вектор .

Таким образом.

Момент импульса тела относительно оси вращения

(5.9)

Следовательно, момент импульса тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость вращения тела вокруг этой оси.

Вопрос №16

Три основных закона движения тел:

1-й закон. Всякое тело сохраняет свое состояние покоя или равномерного и

прямолинейного движения, пока и поскольку приложенные силы не заставят его

изменить это состояние. Этот закон называется законом инерции. Если m - масса

тела, а v - его скорость, то закон инерции математически можно представить в

следующем виде:

Если v = 0, то тело находится в покое; если v = const, то тело движется

равномерно и прямолинейно. Произведение mv называется количеством движения тела.

Изменение количества движения тела может произойти только в результате его

взаимодействия с другими телами, т.е. под действием силы.

2-й закон. Изменение количества движения пропорционально приложенной движущей

силе и происходит по направлению той прямой, по которой эта сила действует.

Второй закон математически записывается так: F = mа

т. е. произведение массы тела m на его ускорение а равно действующей силе F.

Уравнение (2.14) называется основным законом динамики материальной точки.

3-й закон. Действие всегда вызывает равное и противоположное противодействие.

Иными словами, воздействия двух тел друг на друга всегда равны и направлены в

противоположные стороны.

Если какое-нибудь тело с массой т1 взаимодействует с другим телом с массой m2 ,

то первое тело изменяет количество движения второго тела m2v2 , no и само

претерпевает от него такое же изменение своего количества движения m1v1 , но

только обратно направленное, т.е.

I закон Ньютона

Существуют такие системы отсчета, которые называются инерциальными, относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действие других сил скомпенсированно.

II закон Ньютона

Ускорение тела прямопропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе:

III закон Ньютона

Силы, с которыми два тела действуют друг на друга, равны по модулю и противоположны по направлению.

Вопрос №17

теорема изменения импульса-изменение количества движения системы за некоторый промежу­ток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.

Теорема движения центра масс

система состоит из n точек, с соответствующими массами .

Запишем для каждой точки основной закон динамики

Эта система дифференциальных уравнений движения системы, так как для любой точки k системы

Проектируя уравнения (16.1.1) на координатные оси получим Зn уравнений, которые в общем случае проинтегрировать затруднительно,

Поэтому обычно применяют общие теоремы динамики для которых уравнения (16.1.1) являются исходными.

Теорема об изменении кинетической энергии системы : в дифференциальной форме: dT = , , – элементарные работы, действующих на точку внешних и внутренних сил, в конечной форме:

Т 2 – Т 1 = . Для неизменяемой системы и Т 2 – Т 1 = , т.е. изменение кинетической энергии твердого тела на некотором перемещении равно сумме работ внешних сил, действующих на тело на этом перемещении. Если сумма работ реакций связей на любом возможном перемещении системы равна нулю, то такие связи называются идеальными. Коэффициент полезного действия (кпд): < 1, А пол.сопр. – работа полезных сил сопротивления (сил, для которых предназначена машина), А затр = А пол.сопр. + А вр.сопр. – затраченная работа, А вр.сопр. -– работа вредных сил сопротивления (силы трения, сопротивления воздуха и т.п.).

h= N маш /N дв, N маш – полезная мощность машины, N дв – мощность дв-ля, приводящего ее в движение.

Вопрос №18

Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже бо́льших), преобразования Галилея приближенно верны с очень большой точностью.

Если ИСО(инерциальная система отсчета) S движется относительно ИСО S" с постоянной скоростью вдоль оси , а начала координат совпадают в начальный момент времени в обеих системах, то преобразования Галилея имеют вид:

или, используя векторные обозначения,

(последняя формула остается верной для любого направления осей координат).

§ Как видим, это просто формулы для сдвига начала координат, линейно зависящего от времени (подразумеваемого одинаковым для всех систем отсчета).

Из этих преобразований следуют соотношения между скоростями движения точки и её ускорениями в обеих системах отсчета:

§ Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для малых скоростей (много меньше скорости света).

мировой эфир

Более ста лет назад появилась гипотеза абсолютно неподвижного пространства - мирового эфира. Эфир определялся как некая однородная среда, целиком заполняющая всю вещество и вакуум. За это его назвали "мировым эфиром". Что из себя представляет данная субстанция и каковы его свойства - загадка, но было известно, что свет движется в эфире точно так же, как звук в воздухе. То есть в виде волны. Свет рассматривался как колебание мирового эфира. Было так же декларировано, что вещество движется сквозь эфир не вызывая его возмущения, точно так же, как тонкая сетка с большими ячейками движется внутри воды. Таким образом вещество и эфир строго разграничивались.

Майкельсона опыт

Майкельсонаопыт, опыт, поставленный впервые А. Майкельсоном в 1881 с целью измерения влияния движения Земли на скорость света. Отрицательный результат М. о. был одним из основных экспериментальных фактов, легших в основу относительности теории.

В физике конца 19 века предполагалось, что свет распространяется в некоторой универсальной мировой среде -эфире. При этом ряд явлений (аберрация света, Физо опыт) приводил к заключению, что эфир неподвижен или частично увлекается телами при их движении. Согласно гипотезе неподвижного эфира, можно наблюдать "эфирный ветер" при движении Земли сквозь эфир и скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления её движения в эфире.

М. о. проводился с помощью интерферометра Майкельсона с равными плечами; одно плечо направлялось по движению Земли, другое - перпендикулярно к нему. При повороте всего прибора на 90° разность хода лучей должна менять знак, вследствие чего должна смещаться интерференционная картина. Расчёт показывает, что такое смещение, выраженное в долях ширины интерференционной полосы, равно D = (2l/ l)(v 2 / c 2), где l - длина плеча интерферометра, l - длина волны применявшегося света (жёлтая линия Na), с - скорость света в эфире, v - орбитальная скорость Земли. Так как величина v/c для орбитального движения Земли порядка 10 -4 , то ожидавшееся смещение очень мало и в первом М. о. составляло всего 0,04. Тем не менее уже на основе этого опыта Майкельсон пришёл к убеждению о неверности гипотезы неподвижного эфира.

В дальнейшем М. о. неоднократно повторялся. В опытах Майкельсона и Э. У. Морли (1885-87) интерферометр устанавливался на массивной плите, плавающей в ртути (для плавного вращения). Оптическая длина пути с помощью многократных отражений от зеркал была доведена до 11 м. При этом ожидавшееся смещение D " 0,4. Измерения подтвердили отрицательный результат М. о. В 1958 в Колумбийском университете (США) было ещё раз продемонстрировано отсутствие неподвижного эфира. Пучки излучения двух одинаковых квантовых генераторов микроволн (мазеров) направлялись в противоположные стороны - по движению Земли и против движения - и сравнивались их частоты. С огромной точностью (~10 -9 %) было установлено, что частоты остаются одинаковыми, в то время как "эфирный ветер" привёл бы к появлению различия этих частот на величину, почти в 500 раз превосходящую точность измерений.

В классической физике отрицательный результат М. о. не мог быть понят и согласован с другими явлениямиэлектродинамики движущихся сред. В теории относительности постоянство скорости света для всехинерциальных систем отсчёта принимается как постулат, подтверждаемый большой совокупностью экспериментов.

Постулаты теории относительности

1)Все законы природы одинаковы в инерциальных системах отсчета

2)Скорость света в вакууме одинакова во всех инерциальных системах отсчетав

Лоренца преобразования , в специальной теории относительности - преобразования координат и времени какого-либо события при переходе от одной инерциальной системы отсчёта к другой. Получены в 1904 Х. А. Лоренцом как преобразования, по отношению к которым уравнения классической микроскопической электродинамики (Лоренца - Максвелла уравнения) сохраняют свой вид. В 1905 А. Эйнштейн вывел их, исходя из двух постулатов, составивших основу специальной теории относительности: равноправия всех инерциальных систем отсчёта и независимости скорости распространения света в вакууме от движения источника света.

Рассмотрим частный случай двух инерциальных систем отсчёта å и å’ с осями х и x’, лежащими на одной прямой, и соответственно параллельными другими осями (у и y’, z и z’). Если система å’ движется относительно å с постоянной скоростью u в направлении оси х, то Л. п. при переходе от å к å’ имеют вид:

,

где с - скорость света в вакууме (штрихованные координаты относятся к системе å’, нештрихованные - к å).

Л. п. приводят к ряду важных следствий, в том числе к зависимости линейных размеров тел и промежутков времени от выбранной системы отсчёта, к закону сложения скоростей в теории относительности и др. При скоростях движения, малых по сравнению со скоростью света (u<<c ), Л. п. переходят в преобразования Галилея (см. Галилея принцип относительности), справедливые в классической механике Ньютона


Похожая информация.


а относительно неподвижной точки 0 называется физическая величина, равная векторному произведению

где - радиус-вектор проведенный из точки 0 в точку а,
- импульс материальной точки.

Направление вектора совпадает с направлением поступательного движения правого винта при его вращении отк. Модуль вектора момента импульса

где - угол между векторамии,- плечо вектораотносительно точки 0. Моментом импульса системы материальных точек относительно неподвижной точки 0 называется векторная сумма моментов импульсов всех материальных точек системы относительно той же точки 0

(22)

7. Момент импульса относительно неподвижной осиz.

Моментом импульса материальной точки а относительно неподвижной осиzназывается скалярная величина, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси. Значение момента импульса не зависит от положения точки 0 на осиz.

Рассмотрим вращение твердого тела вокруг неподвижной оси z(О-О 1). Каждая точка твердого тела описывает горизонтальную окружность радиусасо скоростью. Скорость.и импульс
перпендикулярны этому радиусу, поэтомурадиус является плечом вектора
(угол=90 0). Момент импульса каждой точки твердого тела относительно осиzравен

(23)

и направлен по оси в сторону, определяемую правилом правого винта. Моменты импульса всех точек твердого тела будут сонаправлены, поэтому момент импульса твердого тела относительно оси есть сумма моментов импульсов отдельных частиц

то есть все точки твердого тела вращаются с одинаковой угловой скоростью, то wможно вынести за знак суммы

,

.
.

Момент импульса твердого тела относительно оси вращения равен произведению момента инерции тела относительно той же оси на угловую скорость.

Лекция 6. Уравнения динамики вращательного движения.

1. Закон сохранения момента импульса.

Продифференцируем момент импульса по времени

Величина есть скорость материальной точки, связанная с ее импульсом соотношением
. Поэтому первое слагаемое
равно нулю как векторное произведение коллинеарных векторови
, (
) Второе слагаемое можно преобразовать с помощью уравнения Ньютона

.

. (1)

Это уравнение моментов относительно неподвижной точки. Производная по времени момента импульса материальной точки (относительно неподвижной точки) равна моменту силы относительно этой же точки.

Уравнение моментов (1) можно обобщить на случай произвольной системы материальных точек. Пусть система состоит из nматериальных точек вращающихся вокруг центра 0.

…………………….

где
- момент внутренних сил,
- момент внешних сил.

По третьему закону Ньютона
= 0, так как внутренние силы входят попарно, сила с которой одно тело действует на другое равно и противоположно направлена сила с которой второе тело действует на первое. Полный момент этих сил равен нулю (см. рис.)

Исходя из этого уравнение примет вид

,

где
- момент импульса системы материальных точек.

=
- момент всех сил действующих на систему материальных точек.

(2)

Основной закон динамики вращательного движения для системы материальных точек. Производная по времени от момента импульса системы материальных точек относительно неподвижной точки равна геометрической сумме моментов всех внешних сил относительно этой точки .

Если момент всех внешних сил относительно неподвижной точки равен нулю, то момент импульса системы относительно той же неподвижной точки остается постоянным во времени.

и
или(3)

Выражение (3) – математическая запись закона сохранения момента импульса. Если мы продифференцируем по времени момент импульса относительно неподвижной оси, то получим уравнение моментов относительно неподвижной оси

(4)

Как было показано ранее, момент импульса твердого тела относительно оси вращения равен

.

Если момент инерции при вращении остается постоянным, то

,

где
- угловое ускорение. Тогда

(5).

Произведение момента инерции твердого тела относительно оси вращения на угловое ускорение равно моменту внешних сил относительно той же оси.

Уравнение (5) – основное уравнение динамики вращательного движения вокруг неподвижной оси. Оно напоминает уравнение Ньютона для поступательного движения.

Роль массы mиграет момент инерцииJ, роль скоростиv– угловая скоростьw, роль с илыF– момент силыM, роль импульсаp– момент импульсаL. Момент импульсаLчасто называют вращательным импульсом системы.

Если момент внешних сил M z относительно оси вращения равен нулю, то вращательный импульс сохраняется:

(6)

Продемонстрировать закон сохранения импульса можно с помощью скамьи Жуковского. Скамья Жуковского представляет собой стул, сиденье которого имеет форму диска. Диск может свободно вращаться вокруг вертикальной оси на шариковых подшипниках.

Человек, оттолкнувшись ногой от пола, приводит скамью во вращение. Вместе со скамьей будет вращаться и он сам. Во время вращения момент импульса системы скамья плюс человек будет оставаться постоянным, какие бы внутренние движения не совершались в системе.

Если человек разведет руки в стороны, то он увеличит момент инерции системы J, а потому угловая скорость вращенияwдолжна уменьшиться, чтобы оставался неизменным вращательный импульсL=Jw(см рис 1а и 1б)

Рис.1а. L=J 1 w 1 Рис.1бL=J 2 w 2

J 1 w 1 =J 2 w 2 (J 2 >J 1, w 2

Если человек, стоя на неподвижной скамье Жуковского, начинает делать конические движения над головой, скамья начинает вращаться в другую сторону (рис.2).

Общий момент импульса системы остается равным нулю.

Когда винт судна начинает вращаться, по закону сохранения момента импульса системы, корпус судна должен вращаться в противоположную сторону. В обычных условиях это не страшно, но в критических ситуациях (сильная боковая волна, легкое судно) может привести к опрокидыванию судна. Эта же ситуация всегда реализуется и для вертолетов. Чтобы этого не происходило, на хвосте устанавливается другой винт для гашения вращения.

В заключении сопоставим основные величины и уравнения определяющие вращение тела им его поступательное движение.

Поступательное движение

Вращательное движение

Масса m

Скорость v = dr / dt

Ускорение a = dv / dt

Сила F

Импульс p = mv

Основное уравнение динамики F = ma

F = dp / dt

Работа dA = F ds

Кинетическая энергия mv 2 /2

Момент инерции J

Угловая скорость w = / dt

Угловое ускорение ε = dw / dt

Момент силы M = Fr

Момент импульса L = Jw

Основное уравнение динамики M =

M = dL / dt

Работа вращения dA = Mdφ

Кинетическая энергия вращения Jw 2 /2

Пусть твёрдое тело вращается вокруг закреплённой оси z с угловой скоростью . Для нахождения момента импульса тела рассматриваем его как механическую систему материальных точек. Мысленно разобьём тело на элементарные части массой Dm i , которые можно принять за материальные точки. Очевидно, что момент импульса тела относительно оси равен векторной сумме отдельных элементарных частей тела относительно той же оси. При вращении тела все его точки движутся по окружностям различного радиуса R i , плоскости которых перпендикулярны к оси вращения. Поэтому моменты импульсов всех элементарных частей тела, согласно правилу правого винта, направлены в одну сторону вдоль оси вращения. Тогда векторное сложение заменяется скалярным, т.е.

Используя формулу (7), имеем: где ¾ модуль линейной скорости i -ой части. Но u i = wR i . Поэтому , и с учётом выражения (9) Поскольку все точки тела обладают одинаковой угловой скоростью w, то её выносим за знак суммы: Так как ¾ момент инерции тела, то L z = I z w. Запишем это выражение в векторном виде:

Итак, момент импульса твёрдого телаотносительно оси вращения равен произведению момента инерции тела относительно той же оси на его угловую скорость . Направление , как и направление , находят по правилу правого винта.

АНАЛОГИЯ МЕЖДУ ВРАЩАТЕЛЬНЫМ И ПОСТУПАТЕЛЬНЫМ ДВИЖЕНИЕМ

Рассмотрев поступательное и вращательное движения можно установить аналогию между ними. В кинематике поступательного движения используются путь s , скорость u и ускорение а . Их роль во вращательном движении играют угол поворота j, угловая скорость w и угловое ускорение ε. В динамике поступательного движения применяются понятия силы , массы т и импульса Во вращательном движении роль силы играет момент силы, роль массы - момент инерции I z и роль импульса - момент импульса Зная формулы поступательного движения легко записать формулы вращательного движения. Например, скорость и ускорение тела при поступательном движении вычисляются по формулам и Тогда угловая скорость и угловое ускорении при вращательном движении находится по формулам и При поступательном движении импульс тела равен Поэтому при вращательном движении момент импульса равен Эту аналогию можно продолжать и дальше.

ОСНОВНОЙ ЗАКОН ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ ТВЁРДОГО ТЕЛА

Пусть тело с моментом инерции I z вращается относительно оси z под действием равнодействующего момента сил. Запишем второй закон Ньютона, являющимся основным законом динамики поступательного движения: и Здесь и т - ускорение и масса тела, - импульс тела и - равнодействующая сил, приложенных к телу. Тогда, пользуясь аналогией между поступательным и вращательным движениями, получаем две записи основного закона динамики вращательного движения:

(11) (12)

Их формулировка: угловое ускорение, приобретаемое телом, пропорционально моменту внешних сил, приложенных к нему, относительно оси вращения, и обратно пропорционально моменту инерции тела относительно той же оси.

Момент внешних сил, действующих на тело, относительно оси вращения равен производной по времени от момента импульса тела относительно той же оси. Соотношение (12) является более общей записью основного закона динамики вращательного движения тела, так как оно оказывается справедливым и для тел, у которых момент инерции тела не является постоянной величиной.

Перейдем к выводу закона сохранения, возникновение которого связано с изотропией пространства.

Эта изотропия означает, что механические свойства замкнутой системы не меняются при любом повороте системы как целого в пространстве. В соответствии с этим рассмотрим бесконечно малый поворот системы и потребуем, чтобы ее функция Лагранжа при этом не изменилась.

Введем вектор бесконечно малого поворота, абсолютная величина которого равна углу поворота, а направление совпадает с осью поворота (причем так, что направление поворота отвечает правилу винта по отношению к направлению ).

Найдем, прежде всего, чему равно при таком повороте приращение радиус-вектора, проведенного из общего начала координат (расположенного на оси вращения) к какой-либо из материальных точек поворачиваемой системы.

Линейное перемещение конца радиус-вектора связано с углом соотношением

(рис. 5). Направление же вектора перпендикулярно к плоскости, проходящей через Поэтому ясно, что

При повороте системы меняется направление не только радиус-векторов, но и скоростей всех частиц, причем все векторы преобразуются по одинаковому закону. Поэтому приращение скорости относительно неподвижной системы координат

Подставив эти выражения в условие неизменяемости функции Лагранжа при повороте

заменяем производные

или, производя циклическую перестановку множителей и вынося за знак суммы:

Ввиду произвольности отсюда следует, что

т. е. мы приходим к выводу, что при движении замкнутой системы сохраняется векторная величина

называемая моментом импульса (или просто моментом} системы.

Аддитивность этой величины очевидна, причем, как и у импульса, она не зависит от наличия или отсутствия взаимодействия между частицами.

Этим исчерпываются аддитивные интегралы движения. Таким образом, всякая замкнутая система имеет всего семь таких интегралов: энергия и по три компоненты векторов импульса и момента.

Поскольку в определение момента входят радиус-векторы частиц, то его значение, вообще говоря, зависит от выбора начала координат. Радиус-векторы и та одной и той же точки по отношению к началам координат, смещенным на вектор а, связаны соотношением а. Поэтому имеем:

Из этой формулы видно, что только в том случае, когда система как целое покоится (т. е. ее момент не зависит от выбора начала координат. На законе сохранения момента эта неопределенность его значения, разумеется, не сказывается, так как у замкнутой системы импульс тоже сохраняется.

Выведем также формулу, связывающую значения момента импульса в двух различных инерциальных системах отсчета К и К", из которых вторая движется относительно первой со скоростью V. Будем считать, что начала координат в системах К и К в данный момент времени совпадают. Тогда радиус-векторы частиц в обеих системах одинаковы, скорости же связаны посредством . Поэтому имеем:

Первая сумма в правой стороне равенства есть момент М в системе введя во вторую сумму радиус-вектор центра инерции согласно (8,3), получаем:

Эта формула определяет закон преобразования момента импульса при переходе от одной системы отсчета к другой, подобно тому, как для импульса и энергии аналогичные законы даются формулами (8,1) и (8,5).

Если система отсчета К есть та, в которой данная механическая система покоится как целое, то V есть скорость центра инерции последней, а - ее полный импульс Р (относительно К).

Другими словами, момент импульса М механической системы складывается из ее «собственного момента» относительно системы отсчета, в которой она покоится, и момента , связанного с ее движением как целого.

Хотя закон сохранения всех трех компонент момента (относительно произвольного начала координат) имеет место только для замкнутой системы, в более ограниченном виде этот закон может иметь место и для систем, находящихся во внешнем поле. Из приведенного выше вывода очевидно, что всегда сохраняется проекция момента на такую ось, относительно которой данное поле симметрично, и потому механические свойства системы не меняются при любом повороте вокруг этой оси; при этом, конечно, момент должен быть определен относительно какой-нибудь точки (начала координат), лежащей на этой же оси.

Наиболее важным случаем такого рода является поле с центральной симметрией, т. е. поле, в котором потенциальная энергия зависит только от расстояния до некоторой определенной точки (центра) в пространстве. Очевидно, что при движении в таком поле сохраняется проекция момента на любую ось, проходящую через центр. Другими словами, сохраняется вектор М момента, но определенного не относительно произвольной точки пространства, а относительно центра поля.

Другой пример: однородное поле вдоль оси z, в котором сохраняется проекция момента, причем начало координат может быть выбрано произвольным образом.

Отметим, что проекция момента на какую-либо ось (назовем ее ) может быть найдена дифференцированием функции Лагранжа по формуле

где координата есть угол поворота вокруг оси z. Это ясно уже из характера изложенного выше вывода закона сохранения момента, но в том же можно убедиться и прямым вычислением. В цилиндрических координатах имеем (подставляя

С другой стороны, функция Лагранжа в этих переменных имеет вид

и ее подстановка в (9,7) приводит к тому же выражению (9,8).

Задачи

1. Найти выражения для декартовых компонент и абсолютной величины момента импульса частицы в цилиндрических координатах .

Момент импульса

Определение

Моментом импульса относительно неподвижной оси $z$ называется скалярная величина $L_{z} $, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки 0 данной оси.

Значение момента импульса $L_{z} $ не зависит от положения точки 0 на оси $z$. При вращении абсолютно твердого тела вокруг неподвижной оси каждая отдельная точка тела движется по окружности постоянного радиуса $r_{i} $ с некоторой скоростью $v_{i} $. Скорость $v_{i} $ и импульс $m_{i} v_{i} $ перпендикулярны этому радиусу, т.е. радиус является плечом вектора $m_{i} v_{i} $. Поэтому можно записать, что момент импульса отдельной точки относительно оси $z$ равен:

Момент импульса твердого тела относительно оси есть сумма моментов импульса отдельных его точек:

Учитывая связь между линейно и угловой скоростями ($v_{i} =\omega r_{i} $), получим следующее выражение для момента импульса тела относительно неподвижной оси:

$L_{z} =\sum _{i=1}^{n}m_{i} r_{i}^{2} \omega =\omega \sum \limits _{i=1}^{n}m_{i} r_{i}^{2} =J_{z} \omega $, (1)

т.е. момент импульса твердого тела относительно оси равен произведению момента инерции тела относительно той же оси на угловую скорость. Продифференцировав выражение (1) по времени, получим:

$\frac{dL_{z} }{dt} =J_{z} \frac{d\omega }{dt} =M_{z} $ (2)

Это еще одна форма уравнения динамики вращательного движения твердого тела относительно неподвижной оси: скорость изменения момента импульса тела относительно неподвижной оси вращения равна результирующему моменту относительно этой оси всех внешних сил, действующих на тело.

Закон сохранения импульса

Закон сохранения момента импульса вытекает из основного уравнения динамики вращательного движения тела, закрепленного в неподвижной точке, и состоит в следующем: если результирующий момент внешних сил относительно неподвижной точки тождественно равен нулю, то момент импульса тела относительно этой точки с течением времени не изменяется.

Действительно, если:

$M=0$, то $\frac{dL}{dt} =0$,

откуда: $\overline{L}=const$. (3)

Другими словами, момент импульса замкнутой системы с течением времени не изменяется.

Из основного закона динамики тела, вращающегося вокруг неподвижной оси $z$ (уравнение 2), следует закон сохранения момента импульса тела относительно оси: если момент внешних сил относительно неподвижной оси вращения тела тождественно равен нулю, то момент импульса тела относительно этой оси не изменяется в процессе движения, т.е. если $M_{z} =0$, то $\frac{dL_{z} }{dt} =0$, откуда $\overline{L}_{z} =const,$ или $J_{z} \omega =const$.(4)

Закон сохранения момента импульса является фундаментальным законом природы. Справедливость этого закона обусловливается свойством симметрии пространства -- его изотропностью, т.е. с инвариантностью физических законов относительно выбора направления осей координат системы отсчета.

Справедливы следующие выражения:

  • Момент инерции тела относительно оси вращения -- это физическая величина, равная сумме произведений масс n материальных точек тела на квадраты их расстояний до рассматриваемой оси:
  • \
  • Момент инерции тела $J_{z} $ относительно любой оси вращения равен моменту его инерции $J_{c} $относительно параллельной оси, проходящей через центр масс С тела, сложенному с произведением массы m тела на квадрат расстояния а между осями: $J_{z} =J_{c} +ma^{2} $;
  • При вращении абсолютно твердого тела вокруг неподвижной оси $z$ его кинетическая энергия равна половине произведения момента инерции относительно оси вращения на квадрат угловой скорости:
  • \
  • Из сравнения формул $E_{k_{2@} } =\frac{J_{z} \omega ^{2} }{2} $и $E_{k} =\frac{mv^{2} }{2} $ следует, что момент инерции -- мера инертности тела при вращательном движении;
  • Уравнение динамики вращательного движения твердого тела относительно неподвижной оси z (аналог второго закона Ньютона) имеет вид: $M_{z} =J_{z} \varepsilon =\frac{dL_{z} }{dt} $.

Пример

Груз массой 0,8 кг подвешен на тонкой невесомой нити, на высоте 3 м над полом. Нить намотана на сплошной однородный цилиндрический вал радиусом 30 см с моментом инерции 0,15 кг*м2. Вращаясь, вал опускает груз на пол. Определить: время опускания груза до пола, силу натяжения нити, кинетическую энергию груза в момент касания грузом пола.

$r$= 15 см=0,15м

$J_{x} $= 0,18 кг*м2

Найти: $t,N,E_{k} $-?

Отсюда, сила натяжения нити: $N=\frac{J_{x} \varepsilon }{r} =\frac{0,18\cdot 4}{0,15} =4,8H$.

Кинетическая энергия груза в момент удара об пол:

Ответ: $t=3,2A$, $N=4,8H$, $E_{k} =0,9Дж.$