Алгоритм решения уравнений с помощью. Алгоритм решения рациональных уравнений

Конспект урока по теме « Решение уравнений» (6 класс)

Цель урока: применять полученные знания при решении уравнений.

Тип урока: объяснение нового материала.

План урока:

    Выполнение заданий на упрощение выражений, заполнение таблицы и узнавание способа действия при решении уравнений.

    Через решение задач на взвешивание постановка проблемы решения новых уравнений.

    Запись алгоритма решения уравнений в конспект, в парах.

    Решение уравнений по алгоритму. Отработка только переноса слагаемых из одной части уравнения в другую, сильные учащиеся решают уравнение до конца и в конце урока защищают решение.

Ход урока:

Упростить выражение:

Г

Заметим, сумма противоположных слагаемых равна 0.

    Решить задачу.

На одной чаше весов 5 буханок хлеба, на другой 1 такая буханка и гири в 5 кг, 2 кг и 1 кг. Определить вес 1 буханки хлеба.

Решение:

Пусть x кг – вес 1 буханки хлеба,

5 x кг – вес 5 таких буханок хлеба.

Можно составить уравнение: 5 x = x +8

Вычтем из обеих частей уравнения по x (снимем с обеих чашек весов по 1 буханке хлеба).

Можно к обеим частям уравнения прибавлять одно и то же числ о.

Получим 5 x- x = x- x +8.

Но x - x= 0, значит 5 x - x = 8.

Это уравнение можно получить из данного, если слагаемое x перенести из правой части в левую, изменив его знак на противоположный.

Упрощая левую часть уравнения 5 x - x = 8, получим 4 x= 8.

Разделим на коэффициент при переменной обе части уравнения

Можно обе части уравнения умножать (делить) на одно и то же число (кроме 0).

Число 2 и есть уравнения 5 x = x +8 , так как 52=2+8.

Записать свойства уравнений в конспект.

3.Алгоритм решения уравнений.

1) слагаемые, содержащие переменную, перенести в левую часть уравнения, а числа – в его правую часть, не забывая при переносе менять знаки на противоположные;

2) привести подобные слагаемые в левой и правой частях уравнения;

3) разделить число в правой части уравнения на коэффициент при переменной.

Работа с правилом (ученики в парах рассказывают друг другу правило по карточке на слайде)

1) слагаемые, содержащие ………….., перенести в левую часть уравнения, а …….. – в его правую часть, не забывая при переносе …….. знаки на …………..;

2) привести ………. слагаемые в левой и правой частях уравнения;

3) …........... число в правой части уравнения на ……………. при переменной.

Немного истории.

Первый прием преобразования уравнений описал знаменитый арабский математик Мухаммед аль-Хорезми, живший в Хорезми и в Багдаде на рубеже IX – X вв. Одно из главных его сочинений в переводе с арабского означает «Книга о восстановлении и противопоставлении». Перенося члены уравнения из одной части в другую, мы в одной части их «уничтожаем», но зато в другой «восстанавливаем», меняя при этом их знаки на противоположные. Восстановление – по-арабски аль-джебр. От этого слова и произошло название – алгебра. Алгебра, которую вы будете изучать, возникла и развивалась много веков тому назад именно как наука о решении уравнений.

    Решение уравнений

Учащиеся с помощью слайдов разбирают решение уравнений и записывают решение в тетрадь.

1) 3x -12 = 0

    3x – 2 = 10

3) 2x – 2 = 10 - x


    Решение уравнений с выбором ответа

1) 5x – 2 = 18

2) 7x = x + 24

В. 7x – x = 24

    2x – 4 = 6x – 20

А. 2x - 6x = -20 + 4

Б. 6x – 2x = 4-20

В. 2x – 6x = 20 +4

    3x + 9 = x + 9

А. 3x + x = 9 + 9

Б. 3x – x = 9 – 9

В. 9 – 9 = x – 3x

Группе более сильных учащихся предлагается решить уравнения до конца и защитить свое решение.

Ответы: 4, 4, 4, 0.

    Найти ошибку

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Оценочная карточка самостоятельной работы ученика(цы) ………………….. Класса ………...

Упрощение выражений

Решение задачи

Работа с формулировкой алгоритма

Выбор правильной строки

Решение уравнений

Дополнительные баллы

0 б - задание не выполнено, 1 б - задание выполнено частично, 2 б - задание выполнено, но вам помогали, 3 б- задание выполнено полностью и самостоятельно

Алгоритм решения уравнений: 1.По возможности упростите выражение (раскройте скобки, приведите подобные слагаемые). 2. Перенесите слагаемые, содержащие неизвестное, в одну часть уравнения(обычно в левую), а остальные слагаемые в другую часть уравнения, изменив при этом знаки на противоположные. 3. Приведите подобные слагаемые. 4. Найдите корень уравнения.

Слайд 27 из презентации «Уравнения 6 класс» . Размер архива с презентацией 2882 КБ.

Математика 6 класс

краткое содержание других презентаций

«Возникновение натуральных чисел» - Цифры. Индейцы майя. Древние пастухи. Как появились натуральные числа. Числа первого десятка. Математика каменного века. Живая счетная машина. Десять значков для записи чисел. Числа начинают получать имена. Натуральные числа. Как люди научились записывать цифры. Отрицательные и дробные числа.

««Дроби» 6 класс» - Данные дроби привели к одинаковому знаменателю. Тест. Попробуйте выполнить самостоятельно. Ребята, давайте жить дружно. Путешествие. Трудное действие. Разминка. Египтяне. Найди друга. План действий. Необходимость в дробях. Ах, уж эти дроби. Человек подобен дроби. Дружба. Дроби на Руси.

«Свойства квадрата» - Задачи реферата. Удивительные свойства квадрата. Задачи на разрезание квадрата. Что же такое квадрат. Квадрат в квадрате. Площадь квадрата больше площади любого прямоугольника. Основные свойства квадрата. Боевой порядок пехоты в форме квадрата. Цели реферата. В чем секрет оригами. Квадрат. Оглавление. Оригами. Танграм. Квадрат в математике.

««Устный счёт» 6 класс математика» - Математический лабиринт. Счет. НОД. Найдите среднее арифметическое. Равны ли дроби. Найдите НОД. Упростите. Делители числа 45. Самостоятельная работа. Среди чисел найдите, которые делятся на 2 и 5. Проверочная работа. Устный счет. Устный счет (по цепочке). Вычислите.

«Кроссворд по математике» - Математика. Инструмент для вычерчивания окружностей. Кроссворд. Мир математических кроссвордов. Математическое действие. Правила кроссворда. Разновидности кроссвордов. Отрезок, который соединяет две точки. История. Раздел математики.

«Математические игры для 6 класса» - Расшифруйте надпись. Мал золотник, да дорог. Известные математики. Какими двумя цифрами оканчивается произведение. Сколько стоит книга. Египетские математики. Союз «и». Мера длины. Продолжи ряд тремя числами. Веселые вопросы. Правила игры. Архимед. Во сколько раз путь на 16-й этаж дома длиннее пути на 4-й этаж. Сколько было яблок. Бревно распилили на полуметровые бревна. Брат профессора. Лестница поднимается.

В этом видео мы разберём целый комплект линейных уравнений, которые решаются по одному и тому же алгоритму — потому и они и называются простейшими.

Для начала определимся: что такое линейное уравнение и какое их них называть простейшим?

Линейное уравнение — такое, в котором присутствует лишь одна переменная, причём исключительно в первой степени.

Под простейшим уравнением подразумевается конструкция:

Все остальные линейные уравнения сводятся к простейшим с помощью алгоритма:

  1. Раскрыть скобки, если они есть;
  2. Перенести слагаемые, содержащие переменную, в одну сторону от знака равенства, а слагаемые без переменной — в другую;
  3. Привести подобные слагаемые слева и справа от знака равенства;
  4. Разделить полученное уравнение на коэффициент при переменной $x$ .

Разумеется, этот алгоритм помогает не всегда. Дело в том, что иногда после всех этих махинаций коэффициент при переменной $x$ оказывается равен нулю. В этом случае возможны два варианта:

  1. Уравнение вообще не имеет решений. Например, когда получается что-нибудь в духе $0\cdot x=8$, т.е. слева стоит ноль, а справа — число, отличное от нуля. В видео ниже мы рассмотрим сразу несколько причин, по которым возможна такая ситуация.
  2. Решение — все числа. Единственный случай, когда такое возможно — уравнение свелось к конструкции $0\cdot x=0$. Вполне логично, что какой бы $x$ мы ни подставили, все равно получится «ноль равен нулю», т.е. верное числовое равенство.

А теперь давайте посмотрим, как всё это работает на примере реальных задач.

Примеры решения уравнений

Сегодня мы занимаемся линейными уравнениями, причем только простейшими. Вообще, под линейным уравнением подразумевается всякое равенство, содержащее в себе ровно одну переменную, и она идет лишь в первой степени.

Решаются такие конструкции примерно одинаково:

  1. Прежде всего необходимо раскрыть скобки, если они есть (как в нашем последнем примере);
  2. Затем свести подобные
  3. Наконец, уединить переменную, т.е. всё, что связано с переменной — слагаемые, в которых она содержится — перенести в одну сторону, а всё, что останется без неё, перенести в другую сторону.

Затем, как правило, нужно привести подобные с каждой стороны полученного равенства, а после этого останется лишь разделить на коэффициент при «иксе», и мы получим окончательный ответ.

В теории это выглядит красиво и просто, однако на практике даже опытные ученики старших классов могут допускать обидные ошибки в достаточно простых линейных уравнениях. Обычно ошибки допускаются либо при раскрытии скобок, либо при подсчёте «плюсов» и «минусов».

Кроме того, бывает так, что линейное уравнение вообще не имеет решений, или так, что решением является вся числовая прямая, т.е. любое число. Эти тонкости мы и разберем в сегодняшнем уроке. Но начнем мы, как вы уже поняли, с самых простых задач.

Схема решения простейших линейных уравнений

Для начала давайте я еще раз напишу всю схему решения простейших линейных уравнений:

  1. Раскрываем скобки, если они есть.
  2. Уединяем переменные, т.е. все, что содержит «иксы» переносим в одну сторону, а без «иксов» — в другую.
  3. Приводим подобные слагаемые.
  4. Разделяем все на коэффициент при «иксе».

Разумеется, эта схема работает не всегда, в ней есть определенные тонкости и хитрости, и сейчас мы с ними и познакомимся.

Решаем реальные примеры простых линейных уравнений

Задача №1

На первом шаге от нас требуется раскрыть скобки. Но их в этом примере нет, поэтому пропускаем данный этап. На втором шаге нам нужно уединить переменные. Обратите внимание: речь идет лишь об отдельных слагаемых. Давайте запишем:

Приводим подобные слагаемые слева и справа, но тут уже это сделано. Поэтому переходим к четвертому шагу: разделить на коэффициент:

\[\frac{6x}{6}=-\frac{72}{6}\]

Вот мы и получили ответ.

Задача №2

В этой задаче мы можем наблюдать скобки, поэтому давайте раскроем их:

И слева и справа мы видим примерно одну и ту же конструкцию, но давайте действовать по алгоритму, т.е. уединяем переменные:

Приведем подобные:

При каких корнях это выполняется. Ответ: при любых. Следовательно, можно записать, что $x$ — любое число.

Задача №3

Третье линейное уравнение уже интересней:

\[\left(6-x \right)+\left(12+x \right)-\left(3-2x \right)=15\]

Тут есть несколько скобок, однако они ни на что не умножаются, просто перед ними стоят различные знаки. Давайте раскроем их:

Выполняем второй уже известный нам шаг:

\[-x+x+2x=15-6-12+3\]

Посчитаем:

Выполняем последний шаг — делим все на коэффициент при «икс»:

\[\frac{2x}{x}=\frac{0}{2}\]

Что необходимо помнить при решении линейных уравнений

Если отвлечься от слишком простых задач, то я бы хотел сказать следующее:

  • Как я говорил выше, далеко не каждое линейное уравнение имеет решение — иногда корней просто нет;
  • Даже если корни есть, среди них может затесаться ноль — ничего страшного в этом нет.

Ноль — такое же число, как и остальные, не стоит его как-то дискриминировать или считать, что если у вас получился ноль, то вы что-то сделали неправильно.

Еще одна особенность связана с раскрытием скобок. Обратите внимание: когда перед ними стоит «минус», то мы его убираем, однако в скобках знаки меняем на противоположные . А дальше мы можем раскрывать ее по стандартным алгоритмам: мы получим то, что видели в выкладках выше.

Понимание этого простого факта позволит вам не допускать глупые и обидные ошибки в старших классах, когда выполнение подобных действий считается самим собой разумеющимся.

Решение сложных линейных уравнений

Перейдем к более сложным уравнениям. Теперь конструкции станут сложнее и при выполнении различных преобразований возникнет квадратичная функция. Однако не стоит этого бояться, потому что если по замыслу автора мы решаем линейное уравнение, то в процессе преобразования все одночлены, содержащие квадратичную функцию, обязательно сократятся.

Пример №1

Очевидно, что первым делом нужно раскрыть скобки. Давайте это сделаем очень аккуратно:

Теперь займемся уединением:

\[-x+6{{x}^{2}}-6{{x}^{2}}+x=-12\]

Приводим подобные:

Очевидно, что у данного уравнения решений нет, поэтому в ответе так и запишем:

\[\varnothing \]

или корней нет.

Пример №2

Выполняем те же действия. Первый шаг:

Перенесем все, что с переменной, влево, а без нее — вправо:

Приводим подобные:

Очевидно, что данное линейное уравнение не имеет решения, поэтому так и запишем:

\[\varnothing \],

либо корней нет.

Нюансы решения

Оба уравнения полностью решены. На примере этих двух выражений мы ещё раз убедились, что даже в самых простых линейных уравнениях всё может быть не так просто: корней может быть либо один, либо ни одного, либо бесконечно много. В нашем случае мы рассмотрели два уравнения, в обоих корней просто нет.

Но я бы хотел обратить ваше внимание на другой факт: как работать со скобками и как их раскрывать, если перед ними стоит знак «минус». Рассмотрим вот это выражение:

Прежде чем раскрывать, нужно перемножить всё на «икс». Обратите внимание: умножается каждое отдельное слагаемое . Внутри стоит два слагаемых — соответственно, два слагаемых и умножается.

И только после того, когда эти, казалось бы, элементарные, но очень важные и опасные преобразования выполнены, можно раскрывать скобку с точки зрения того, что после неё стоит знак «минус». Да, да: только сейчас, когда преобразования выполнены, мы вспоминаем, что перед скобками стоит знак «минус», а это значит, что все, что в низ, просто меняет знаки. При этом сами скобки исчезают и, что самое главное, передний «минус» тоже исчезает.

Точно также мы поступаем и со вторым уравнением:

Я не случайно обращаю внимание на эти мелкие, казалось бы, незначительные факты. Потому что решение уравнений — это всегда последовательность элементарных преобразований, где неумение чётко и грамотно выполнять простые действия приводит к тому, что ученики старших классов приходят ко мне и вновь учатся решать вот такие простейшие уравнения.

Разумеется, придёт день, и вы отточите эти навыки до автоматизма. Вам уже не придётся каждый раз выполнять столько преобразований, вы всё будете писать в одну строчку. Но пока вы только учитесь, нужно писать каждое действие отдельно.

Решение ещё более сложных линейных уравнений

То, что мы сейчас будем решать, уже сложно назвать простейшими задача, однако смысл остается тем же самым.

Задача №1

\[\left(7x+1 \right)\left(3x-1 \right)-21{{x}^{2}}=3\]

Давайте перемножим все элементы в первой части:

Давайте выполним уединение:

Приводим подобные:

Выполняем последний шаг:

\[\frac{-4x}{4}=\frac{4}{-4}\]

Вот наш окончательный ответ. И, несмотря на то, что у нас в процессе решения возникали коэффициенты с квадратичной функцией, однако они взаимно уничтожились, что делает уравнение именно линейным, а не квадратным.

Задача №2

\[\left(1-4x \right)\left(1-3x \right)=6x\left(2x-1 \right)\]

Давайте аккуратно выполним первый шаг: умножаем каждый элемент из первой скобки на каждый элемент из второй. Всего должно получиться четыре новых слагаемых после преобразований:

А теперь аккуратно выполним умножение в каждом слагаемом:

Перенесем слагаемые с «иксом» влево, а без — вправо:

\[-3x-4x+12{{x}^{2}}-12{{x}^{2}}+6x=-1\]

Приводим подобные слагаемые:

Мы вновь получили окончательный ответ.

Нюансы решения

Важнейшее замечание по поводу этих двух уравнений состоит в следующем: как только мы начинаем умножать скобки, в которых находится более чем оно слагаемое, то выполняется это по следующему правилу: мы берем первое слагаемое из первой и перемножаем с каждым элементом со второй; затем берем второй элемент из первой и аналогично перемножаем с каждым элементом со второй. В итоге у нас получится четыре слагаемых.

Об алгебраической сумме

На последнем примере я хотел бы напомнить ученикам, что такое алгебраическая сумма. В классической математике под $1-7$ мы подразумеваем простую конструкцию: из единицы вычитаем семь. В алгебре же мы подразумеваем под этим следующее: к числу «единица» мы прибавляем другое число, а именно «минус семь». Этим алгебраическая сумма отличается от обычной арифметической.

Как только при выполнении всех преобразований, каждого сложения и умножения вы начнёте видеть конструкции, аналогичные вышеописанным, никаких проблем в алгебре при работе с многочленами и уравнениями у вас просто не будет.

В заключение давайте рассмотрим ещё пару примеров, которые будут ещё более сложными, чем те, которые мы только что рассмотрели, и для их решения нам придётся несколько расширить наш стандартный алгоритм.

Решение уравнений с дробью

Для решения подобных заданий к нашему алгоритму придется добавить еще один шаг. Но для начала я напомню наш алгоритм:

  1. Раскрыть скобки.
  2. Уединить переменные.
  3. Привести подобные.
  4. Разделить на коэффициент.

Увы, этот прекрасный алгоритм при всей его эффективности оказывается не вполне уместным, когда перед нами дроби. А в том, что мы увидим ниже, у нас и слева, и справа в обоих уравнениях есть дробь.

Как работать в этом случае? Да всё очень просто! Для этого в алгоритм нужно добавить ещё один шаг, который можно совершить как перед первым действием, так и после него, а именно избавиться от дробей. Таким образом, алгоритм будет следующим:

  1. Избавиться от дробей.
  2. Раскрыть скобки.
  3. Уединить переменные.
  4. Привести подобные.
  5. Разделить на коэффициент.

Что значит «избавиться от дробей»? И почему выполнять это можно как после, так и перед первым стандартным шагом? На самом деле в нашем случае все дроби являются числовыми по знаменателю, т.е. везде в знаменателе стоит просто число. Следовательно, если мы обе части уравнения домножим на это число, то мы избавимся от дробей.

Пример №1

\[\frac{\left(2x+1 \right)\left(2x-3 \right)}{4}={{x}^{2}}-1\]

Давайте избавимся от дробей в этом уравнении:

\[\frac{\left(2x+1 \right)\left(2x-3 \right)\cdot 4}{4}=\left({{x}^{2}}-1 \right)\cdot 4\]

Обратите внимание: на «четыре» умножается все один раз, т.е. если у вас две скобки, это не значит, что каждую из них нужно умножать на «четыре». Запишем:

\[\left(2x+1 \right)\left(2x-3 \right)=\left({{x}^{2}}-1 \right)\cdot 4\]

Теперь раскроем:

Выполняем уединение переменной:

Выполняем приведение подобных слагаемых:

\[-4x=-1\left| :\left(-4 \right) \right.\]

\[\frac{-4x}{-4}=\frac{-1}{-4}\]

Мы получили окончательное решение, переходим ко второму уравнению.

Пример №2

\[\frac{\left(1-x \right)\left(1+5x \right)}{5}+{{x}^{2}}=1\]

Здесь выполняем все те же действия:

\[\frac{\left(1-x \right)\left(1+5x \right)\cdot 5}{5}+{{x}^{2}}\cdot 5=5\]

\[\frac{4x}{4}=\frac{4}{4}\]

Задача решена.

Вот, собственно, и всё, что я хотел сегодня рассказать.

Ключевые моменты

Ключевые выводы следующие:

  • Знать алгоритм решения линейных уравнений.
  • Умение раскрывать скобки.
  • Не стоит переживать, если где-то у вас появляются квадратичные функции, скорее всего, в процессе дальнейших преобразований они сократятся.
  • Корни в линейных уравнениях, даже самых простых, бывают трех типов: один единственный корень, вся числовая прямая является корнем, корней нет вообще.

Надеюсь, этот урок поможет вам освоить несложную, но очень важную для дальнейшего понимания всей математики тему. Если что-то непонятно, заходите на сайт, решайте примеры, представленные там. Оставайтесь с нами, вас ждет еще много интересного!

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

«Метод Гаусса и Крамера» - Метод Гаусса. Элементарные преобразования. Разделим первое уравнение системы (1) на а11. (5). Умер Гаусс 23 февраля 1855 года в Гёттингене. Метод Гаусса - классический метод решения системы линейных алгебраических уравнений. Затем х2 и х3 подставляют в первое уравнение и находят х1. Пусть коэффициент.

«Уравнения и неравенства» - Заключается в следующем: строят в одной системе координат графики двух функций. 4. Графический метод при определении количества корней уравнения. 3. Сколько корней имеет уравнение? 2. Найдите сумму чисел, удовлетворяющих неравенству. Решение системы графическим способом. 3. Найдите промежуток, содержащий наибольшее целое число, удовлетворяющее неравенству.

«Теорема Гаусса-Маркова» - Докажем несмещенность оценок (7.3). Сформируем вектора и матрицу коэффициентов на основе системы (7.2). Если матрица Х неколлинеарна и вектор случайных возмущений удовлетворяет следующим требованиям: Где. (7.7). Для получения необходимого условия экстремума дифференцируем (7.6) по вектору параметров.

«Способы решения систем уравнений» - Б. 1. Вычислите: 14. 6. Сколько процентов составляет число 8 от своего квадрата? 12. 7. Найдите наибольший корень уравнения. 9. График какой функции изображен на рисунке? Найдите значение выражения. %. Х. O. В. 15х + 10(1 – х) = 1.

«Иррациональное уравнение» - Найди ошибку. Уравнения, в которых переменная содержится под знаком корня, называются иррациональными. ? Х – 6 = 2 ? х – 3 = 0 ? х + 4 =7 ? 5 – х = 0 ? 2 – х = х + 4. ПРОБЛЕМА: Учащиеся не всегда умеют сознательно использовать информацию об иррациональных уравнениях. Является ли число x корнем уравнения: а) ? х – 2 = ?2 – х, х0 = 4 б) ?2 – х = ? х – 2, х0 = 2 в) ? х – 5 = ? 2х – 13, х0 = 6 г) ? 1 – х = ? 1 + х, х0 = 0.

«Решение уравнений с параметром» - Решение. Пример. 6 класс. Примеры: В 5 классе при повторении свойств чисел можно рассмотреть примеры. На внеклассных занятиях по математике в 6 классе рассматривается решение уравнений с параметрами вида: 1) ах = 6 2) (а – 1)х = 8,3 3) bх = -5. При а = -1/2 получим уравнение 0х = 0. Уравнение имеет бесконечное множество решений.

Всего в теме 49 презентаций