Малые свободные колебания системы с двумя степенями свободы. Малые свободные колебания механических систем с двумя степенями свободы

Как известно, тело, ничем не ограниченное в движениях, называется свободным, так как может двигаться в любом направлении. Отсюда, каждое свободное твердое тело имеет шесть степеней свободы движения. Оно обладает возможностью производить следующие перемещения: три перемещения поступательного характера, соответственно трем основным системам координат, и три вращательных движения вокруг этих трех координатных осей.

Наложение связей (закрепление) уменьшает количество степеней свободы. Так, если тело в одной своей точке закреплено, оно не может производить перемещение вдоль координатных осей, его движения ограничиваются лишь вращением вокруг этих осей, т.е. тело имеет три степени свободы. В том случае, когда закрепленными являются две точки, тело обладает только одной степенью свободы, оно может лишь вращаться вокруг линии (оси), проходящей через обе эти точки. И наконец, при трех закрепленных точках, не лежащих на одной линии, количество степеней свободы равно нулю, и никаких движений тела быть не может. У человека пассивный аппарат движения составляют части его тела, называемые звеньями. Все они соединены между собой, поэтому теряют возможность к трем видам движений вдоль координатных осей. У них остаются только возможности вращения вокруг этих осей. Таким образом, максимальное количество степеней свободы, которым может обладать одно звено тела по отношению к другому звену, смежному с ним, равняется трем.

Это относится к наиболее подвижным суставам человеческого тела, имеющим шаровидную форму.

Последовательно или разветвленные соединения частей тела (звеньев) образуют кинематические цепи.

У человека различают:

  • - открытые кинематические цепи , имеющие свободный подвижный конец, закрепленный лишь на одном своем конце (например, рука по отношению к туловищу);
  • - замкнутые кинематические цепи , закрепленные на обоих концах (например, позвонок - ребро - грудина - ребро - позвонок).

Следует отметить, что это касается потенциально возможных размахов движений в суставах. В действительности же у живого человека эти показатели всегда меньше, что доказано многочисленными работами отечественных исследователей - П. Ф. Лесгафтом, М. Ф. Иваницким, М. Г. Привесом, Н. Г. Озолиным и др. На величину подвижности в соединениях костей у живого человека влияет ряд факторов, связанных с возрастом, полом, индивидуальными особенностями, функциональным состоянием нервной системы, степенью растяжения мышц, температурой окружающей среды, временем дня и, наконец, что важно для спортсменов, степенью тренированности. Так, во всех соединениях костей (прерывных и непрерывных) степень подвижности у лиц молодого возраста больше, чем у старшего возраста; у женщин в среднем больше, чем у мужчин. На величину подвижности оказывает влияние степень растяжения тех мышц, которые находятся на стороне, противоположной движению, а также сила мышц, производящих данное движение. Чем эластичнее первые из названных мышц и сильнее вторые, тем размах движений в данном соединении костей больше, и наоборот. Известно, что в холодном помещении движения имеют меньший размах, чем в теплом, утром они меньше, чем вечером. Применение различных упражнений по-разному влияет на подвижность соединений. Так, систематические тренировки упражнениями «на гибкость» увеличивают амплитуду движений в соединениях, тогда как «силовые» упражнения, наоборот, уменьшают ее, приводя, к «закрепощению» суставов. Однако уменьшение амплитуды движений в суставах при применении силовых упражнений не является абсолютно неизбежным. Его можно предотвратить правильным сочетанием силовых упражнений с упражнениями на растяжение тех же самых мышечных групп.

В открытых кинематических цепях человеческого тела подвижность исчисляется десятками степеней свободы. Например, подвижность запястья относительно лопатки и подвижность предплюсны относительно таза насчитывает по семь степеней свободы, а кончики пальцев кисти относительно грудной клетки - 16 степеней свободы. Если суммировать все степени свободы конечностей и головы относительно туловища, то это выразится числом 105, слагающимся из следующих позиций:

  • - голова - 3 степени свободы;
  • - руки - 14 степеней свободы;
  • - ноги - 12 степеней свободы;
  • - кисти и стопы - 76 степеней свободы.

Для сравнения укажем, что преобладающее большинство машин обладает всего одной степенью свободы движений.

В шаровидных суставах возможны вращения около трех взаимно перпендикулярных осей. Общее же количество осей, около которых возможны в этих суставах вращения, до бесконечности велико. Следовательно, относительно шаровидных суставов можно сказать, что сочленяющиеся в них звенья из возможных шести степеней свободы движений имеют три степени свободы и три степени связанности.

Меньшей подвижностью обладают суставы с двумя степенями свободы движений и четырьмя степенями связанности. К ним относятся суставы яйцевидной или эллипсовидной и седловиной форм, т.е. двухосные. В них возможны движения вокруг этих двух осей.

Одну степень свободы подвижности и вместе с этим пять степеней связанности имеют звенья тела в тех суставах, которые обладают одной осью вращения, т.е. имеют две закрепленные точки.

В преобладающей части суставов тела человека две или три степени свободы. При нескольких степенях свободы движений (двух или более) возможно бесчисленное множество траекторий. Соединения костей черепа имеют шесть степеней связанности и являются неподвижными. Соединение костей при помощи хрящей и связок (синхондрозы и синдесмозы) могут иметь в некоторых случаях значительную подвижность, которая зависит от эластичности и от размеров хрящевых или соединительнотканных образований, находящихся между данными костями.

Колебания с несколькими степенями свободы.

Краткие сведения из теории.

Системами с п степенями свободы принято в динамике называть такие системы, для полной фиксации геометрического состояния которых в любой момент времени требуется задать п параметров, например положение (прогибы) п точек. Положение прочих точек определяется обычными статическими приемами.

Примером системы с п степенями свободы может служить балка или плоская рама, если массы ее отдельных частей или элементов условно (для облегчения динамического расчета) считаются сосредоточенными в п точках, или если она несет п больших масс (двигатели, моторы), по сравнению с которыми возможно пренебречь собственным весом элементов. Если отдельные сосредоточенные («точечные») массы могут при колебаниях совершать перемещения по двум направлениям, то число степеней свободы системы будет равно числу связей, которые следует наложить на систему, чтобы ликвидировать смещения всех масс.

Если вывести из равновесия систему с п степенями свободы, то она будет совершать свободные колебания , причем каждая «точка» (масса) будет совершать сложные полигармонические колебания типа:

Постоянные Аi и Вi зависят от начальных условий движения (отклонений масс от статического уровня и скоростей в момент времени t =0). Лишь в некоторых, особых, случаях возбуждения колебаний полигармоническое движение для отдельных масс может перейти в гармоническое, т.е. как в системе с одной степенью свободы:

Число собственных частот системы равно числу ее степеней свободы.

Для вычисления собственных частот необходимо решить так называемый определитель частот, записываемый в таком виде:

Это условие в развернутом виде дает уравнение п -ой степени для определения п значений ω 2 , которое называется уравнением частот.

Через δ 11 , δ 12 , δ 22 и т.д. обозначены возможные перемещения. Так, δ 12 есть перемещение по первому направлению точки расположения первой массы от единичной силы, приложенной по второму направлению к точке расположения второй массы и т.д.

При двух степенях свободы уравнение частот получает вид:

Откуда для двух частот имеем:

В том случае, когда отдельные массы М i могут совершать в совокупности с линейными перемещениями также вращательные или только вращательные движения, то i -той координатой будет угол вращения, и в определителе частот массу

М i надлежит заменить моментом инерции массы J i ; соответственно возможные перемещения по направлению i -той координаты (δ i 2 , δ i 2 и т.д.) будут являтся угловыми перемещениями.

Если какая-либо масса будет совершать колебания по нескольким направлениям - i -му и k -му (например, по вертикальному и горизонтальному), то такая масса участвует в определителе несколько раз под номерами М i и М k и ей соответствует несколько возможных перемещений (δ ii , δ kk , δ ik , и т.д.).

Заметим, что каждой собственной частоте присуща своя особая форма колебаний(характер изогнутой оси, линии прогибов, перемещений и т.п.), которая отдельных, особых, случаях может оказаться действительной формой колебаний, если только надлежащим образом или возбуждены свободные колебания (надлежащий подбор импульсов, точек их приложения и т.п.). В этом случае колебания системы будут совершаться по законам движения системы с одной степенью свободы.

В общем случае, как это вытекает из выражения (9.1), система совершает полигармонические колебания, но, очевидно, что всякая сложная упругая линия, в которой отражается влияние всех собственных частот, может быть разложена на отдельные составляющие формы, каждая из которых соответствует своей собственной частоте. Процесс такого разложения истинной формы колебаний на составляющие (что необходимо при решении сложных задач строительной динами) носит название разложения по формам собственных колебаний.

Если в каждой массе, точнее – по направлению каждой степени свободы, приложить возмущающую силу, изменяющуюся по времени по гармоническому закону

или , что для дальнейшего безразлично, причем амплитуды сил при каждой масс различны, а частота и фаз одинаковы, то при продолжительном действии таких возмущающих сил система будет совершать установившееся вынужденные колебания с частотой вынуждающей силы. Амплитуды перемещений по направлению любой i -той степени в этом случае будет:

где определитель D записывается по (9.2) с заменой ω на θ и, следовательно, D≠0; D i определяется выражением:

т.е. i -й столбец определителя D заменяется столбцо, составленным из членом вида: Для случая двух степеней свободы: (9.6)

И соответственно

При расчете на вынужденные колебания балок постоянного сечения, несущих сосредоточенные массы (рис.9.1).


Проще, однако, пользоваться нижеуказанными формулами для амплитуд прогиба, угла поворота, изгибающего момента и поперечной силы в любом сечении балки:

(9.7)

где y 0 , φ 0 , M 0 , Q 0 – амплитуды прогиба, поворота, момента и поперечной силы начального сечения (начальные параметры); M i и J i - масса и ее момент инерции (сосредоточенные массы); знак ∑ распространяется на все силы и сосредоточенные массы, расположенные от начального сечения до обследуемого.

Указанными формулами (9.7) можно пользоваться и при вычислении собственных частот, для чего необходимо считать возмущающие силы ∑ Р i и моменты ∑ М i равными нулю, заменить частоту вынужденных колебаний θ частотой собственных колебаний ω и, предполагая существование колебаний (свободных колебаний), написать выражения (9.7) применительно к сечениям, где расположены сосредоточенные массы и уже известны амплитуды (опорные сечения, ось симметрии и т.д.). Получим систему однородных линейных уравнений. Приравнивая к нулю определитель этой системы, получим возможность вычислить собственные частоты.

Целесообразным, оказывается использовать выражения (9.4) и (9.5) для определения амплитуд (y 0 , φ 0 , и т.п.) при х =0, а затем с помощью (9.7) вычислить все остальные элементы прогиба.

Более сложной является задача расчета движений системы с несколькими степенями свободы на действие произвольной нагрузки, изменяющейся во времени и приложенной к различным массам.

При решении такой задачи надлежит поступать следующим образом:

а) определить собственные частоты и формы собственных колебаний;

б) заданную нагрузку перегруппировать между массами или, как принято говорить, разложить по формам собственных колебаний. Число групп нагрузок равняется числу собственных частот системы;

в) после выполнения указанных выше двух вспомогательных операций сделать расчет для каждой группы нагрузок по известным формулам из теории колебаний системы с одной степенью свободы, причем частота собственных колебаний в этих формулах принимается та, которой соответствует данная группа нагрузки;

г) частные решения от каждой категории нагрузок суммируют, чем и определяется окончательное решение задачи.

Определение собственных частот выполняется согласно (9.2). Что касается выявления форм собственных колебаний, то здесь необходимо руководствоваться тем основным свойством любой формы собственных колебаний, что она представляет собой линию влияния прогиба от сил (число которых равно числу степеней свободы), пропорциональных произведению масс на ординаты прогибов точек прикрепления масс. При равных массах форма собственных колебаний представляет линию прогиба от сил, пропорциональных ординатам прогиба; эпюра нагрузки подобна эпюре прогиба.

Низшей частоте соответствует наиболее простая форма колебаний. Для балок чаще всего эта форма близко отвечает изогнутой оси системы под влиянием собственного веса. Если данная конструкция оказывается менее жесткой в каком-либо направлении, например в горизонтальном, то для выявления характера искомой изогнутой оси надлежит условно собственный вес приложить в этом направлении.

Колебания системы с несколькими степенями свободы, имеющие важные практические приложения, отличаются от колебаний системы с одной степенью свободы рядом существенных особенностей. Чтобы дать представление об этих особенностях, рассмотрим случай свободных колебаний системы с двумя степенями свободы.

Пусть положение системы определяется обобщенными координатами и при система находится в устойчивом равновесии. Тогда кинетическую и потенциальную энергии системы с точностью до квадратов малых величин можно найти так же, как были найдены равенства (132), (133), и представить в виде:

где инерционные коэффициенты и квазиупругие коэффициенты - величины постоянные. Если воспользоваться двумя уравнениями Лагранжа вида (131) и подставить в них эти значения Т и П, то получим следующие дифференциальные уравнения малых колебаний системы с двумя степенями свободы

Будем искать решение уравнений (145) в виде:

где A, B, k, a - постоянные величины. Подставив эти значения в уравнения (145) и сократив на получим

Чтобы уравнения (147) давали для А и В решения, отличные от иуля, определитель этой системы должен быть равен нулю или, иначе, коэффициенты при A и В в уравнениях должны быть пропорциональны, т. е.

Отсюда для определения получаем следующее уравнение, называемое уравнением частот.

Корни этого уравнения вещественны и положительны; это доказывается математически, но может быть обосновано и тем, что иначе не будут вещественны уравнения (145) не будут иметь решений вида (146), чего для системы, находящейся в устойчивом равновесии, быть не может (после возмущений она должна двигаться вблизи положения

Определив нз (149) , найдем две совокупности частных решений вида (146). Если учесть, что согласно эти решения будут:

где и - значения, которые я получает из (148) при и соответственно.

Колебания, определяемые уравнениями (150) и (151), называются главными колебаниями, а их частоты и кг - собственными частотами системы. При этом, колебание с частотой (всегда меныией) называют первым главным колебанием, а с частотой - вторым главным колебанием. Числа определяющие отношения амплитуд (или самих координат, т. е. ) в каждом из этих колебаний, называют коэффициентами формы.

Так как уравнения (145) являются линейными, то суммы частных решений (150) и (151) тоже будут решениями этих уравнений:

Равенства (152), содержащие четыре произвольных постоянных определяемых по начальным условиям, дают общее решение уравнений (145) и определяют закон малых колебаний системы. колебания слагаются из двух главных колебаний с частотами и не являются гармоническими. В частных случаях, при соответствующих начальных условиях, система может совершать одно из главных колебаний (например, первое, если ) и колебание будет гармоническим.

Собственные частоты и коэффициенты формы не зависят от начальных условий и являются основными характеристиками малых колебаний системы; решение конкретных задач обычно сводится к определению этих характеристик.

Сопоставляя результаты этого и предыдущего параграфов, можно получить представление о том, к чему сведется исследование затухающих и вынужденных колебаний системы с двумя степенями свободы. Мы этого рассматривать не будем, отметим лишь, что при вынужденных колебаниях резонанс у такой системы может возникать дважды: при и при ( - частота возмущающей силы). Наконец, отметим, что колебания системы с s степенями свободы будут слагаться из s колебаний с частотами которые должны определяться из уравнения степени s относительно Это связано со значительными математическими трудностями, преодолеть которые можно с помощью электронных вычислительных (или аналоговых) машин.

Задача 185. Определить собственные частоты и коэффициенты формы малых колебаний двойного физического маятника, образованного стержнями и 2 одинаковой массы и длины l (рис. 374, а).

Решение. Выберем в качестве обобщенных координат малые углы . Тогда , где и, при требуемой точности подсчетов, . В итоге

Теория свободных колебаний систем с несколькими степенями свободы строится аналогично тому, как были рассмотрены в § 21 одномерные колебания.

Пусть потенциальная энергия системы U как функция обобщенных координат , имеет минимум при . Вводя малые смещения

и разлагая по ним U с точностью до членов второго порядка, получим потенциальную энергию в виде положительно определенной квадратичной формы

где мы снова отсчитываем потенциальную энергию от ее минимального значения. Поскольку коэффициенты и входят в (23,2) умноженными на одну и ту же величину , то ясно, что их можно всегда считать симметричными по своим индексам

В кинетической же энергии, которая имеет в общем случае вид

(см. (5,5)), полагаем в коэффициентах и, обозначая постоянные посредством , получаем ее в виде положительно определенной квадратичной формы

Таким образом, лагранжева функция системы, совершающей свободные малые колебания:

Составим теперь уравнения движения. Для определения входящих в них производных напишем полный дифференциал функции Лагранжа

Поскольку величина суммы не зависит, разумеется, от обозначения индексов суммирования, меняем в первом и третьем членах в скобках i на k, a k на i; учитывая при этом симметричность коэффициентов , получим:

Отсюда видно, что

Поэтому уравнения Лагранжа

(23,5)

Они представляют собой систему линейных однородных дифференциальных уравнений с постоянными коэффициентами.

По общим правилам решения таких уравнений ищем s неизвестных функций в виде

где - некоторые, пока неопределенные, постоянные. Подставляя (23,6) в систему (23,5), получаем по сокращении на систему линейных однородных алгебраических уравнений, которым должны удовлетворять постоянные :

Для того чтобы эта система имела отличные от нуля решения, должен обращаться в нуль ее определитель

Уравнение (23.8) - так называемое характеристическое уравнение представляет собой уравнение степени s относительно Оно имеет в общем случае s различных вещественных положительных корней (в частных случаях некоторые из этих корней могут совпадать). Определенные таким образом величины называются собственными частотами системы.

Вещественность и положительность корней уравнения (23,8) заранее очевидны уже из физических соображений. Действительно, наличие у со мнимой части означало бы наличие во временной зависимости координат (23,6) (а с ними и скоростей ) экспоненциально убывающего или экспоненциально возрастающего множителя. Но наличие такого множителя в данном случае недопустимо, так как оно привело бы к изменению со временем полной энергии системы в противоречии с законом ее сохранения.

В том же самом можно убедиться и чисто математическим путем. Умножив уравнение (23,7) на и просуммировав затем по получим:

Квадратичные формы в числителе и знаменателе этого выражения вещественны в силу вещественности и симметричности коэффициентов и , действительно,

Они также существенно положительны, а потому положительно

После того как частоты найдены, подставляя каждое из них в уравнения (23,7), можно найти соответствующие значения коэффициентов Если все корни характеристического уравнения различны, то, как известно, коэффициенты А пропорциональны минорам определителя (23,8), в котором и заменена соответствующим значением обозначим эти миноры через До. Частное решение системы дифференциальных уравнений (23,5) имеет, следовательно, вид

где - произвольная (комплексная) постоянная.

Общее же решение даетбя суммой всех s частных решений. Переходя к вещественной части, напишем его в виде

где мы ввели обозначение

(23,10)

Таким образом, изменение каждой из координат системы со временем представляет собрй наложение s простых периодических колебаний с произвольными амплитудами и фазами, но имеющих вполне определенные частоты.

Естественно возникает вопрос, нельзя ли выбрать обобщенные координаты таким образом, чтобы каждая из них совершала только одно простое колебание? Самая форма общего интеграла (23,9) указывает путь к решению этой задачи.

В самом деле, рассматривая s соотношений (23,9) как систему уравнений с s неизвестными величинами мы можем, разрешив эту систему, выразить величины через координаты . Следовательно, величины можно рассматривать как новые обобщенные координаты. Эти координаты называют нормальными (или главными), а совершаемые ими простые периодические колебания - нормальными колебаниями системы.

Нормальные координаты удовлетворяют, как это явствует из их определения, уравнениям

(23,11)

Это значит, что в нормальных координатах уравнения движения распадаются на s независимых друг от друга уравнений. Ускорение каждой нормальной координаты зависит только от значения этой же координаты, и для полного определения ее временной зависимости надо знать начальные значения только ее же самой и соответствующей ей скорости. Другими словами, нормальные колебания системы полностью независимы.

Из сказанного очевидно, что функция Лагранжа, выраженная через нормальные координаты, распадается на сумму выражений, каждое из которых соответствует одномерному колебанию с одной из частот т. е. имеет вид

(23,12)

где - положительные постоянные. С математической точки зрения это означает, что преобразованием (23,9) обе квадратичные формы - кинетическая энергия (23,3) и потенциальная (23,2) одновременно приводятся к диагональному виду.

Обычно нормальные координаты выбирают таким образом, чтобы коэффициенты при квадратах скоростей в функции Лагранжа были равны 1/2. Для этого достаточно определить нормальные координаты (обозначим их теперь ) равенствами

Все изложенное мало меняется в случае, когда среди корней характеристического уравнения имеются кратные корни. Общий вид (23,9), (23,10) интеграла уравнений движений остается таким же (с тем же числом s членов) с той лишь разницей, что соответствующие кратным частотам коэффициенты уже не являются минорами определителя, которые, как известно, обращаются в этом случае в нуль.

Каждой кратной (или, как говорят, вырожденной) частоте отвечает столько различных нормальных координат, какова степень кратности, но выбор этих нормальных координат не однозначен. Поскольку в кинетическую и потенциальную энергии нормальные координаты (с одинаковым ) входят в виде одинаково преобразующихся сумм то их можно подвергнуть любому линейному преобразованию, оставляющему инвариантной сумму квадратов.

Весьма просто нахождение нормальных координат для трехмерных колебаний одной материальной точки, находящейся в постоянном внешнем поле. Помещая начало декартовой системы координат в точку минимума потенциальной энергии мы получим последнюю в виде квадратичной формы переменных х, у, z, а кинетическая энергия

(m - масса частиц) не зависит от выбора направления координатных осей. Поэтому соответствующим поворотом осей надо только привести к диагональному виду потенциальную энергию. Тогда

и колебания вдоль осей х, у, z являются главными с частотами

В частном случае центрально-симметричного поля эти три частоты совпадают (см. задачу 3).

Использование нормальных координат дает возможность привести задачу о вынужденных колебаниях системы с несколькими степенями свободы к задачам об одномерных вынужденных колебаниях. Функция Лагранжа системы с учетом действующих на нее переменных внешних сил имеет вид

(23,15)

где лагранжева функция свободных колебаний.

Вводя вместо координат нормальные координаты, получим:

где введено обозначение

Соответственно уравнения движения

(23.17)

Задачи

1. Определить колебания системы с двумя степенями свободы, если ее функция Лагранжа