Эндотелиальные клетки, клетки купфера и ито. Звездчатые клетки Кто сказал, что вылечить тяжелые заболевания печени невозможно


Синусоидальные клетки (эндотелиальные клетки, клетки Купфера, звёздчатые и ямочные клетки) вместе с обращённым в просвет синусоида участком гепатоцитов образуют функциональную и гистологическую единицу.

Эндотелиальные клетки выстилают синусоиды и содержат фенестры, образующие ступенчатый барьер между синусоидом и пространством Диссе. Клетки Купфера прикреплены к эндотелию.

Звёздчатые клетки печени располагаются в пространстве Диссе между гепатоцитами и эндотелиальными клетками. Пространство Диссе содержит тканевую жидкость, оттекающую далее в лимфатические сосуды портальных зон. При нарастании синусоидального давления выработка лимфы в пространстве Диссе увеличивается, что играет роль в образовании асцита при нарушении венозного оттока из печени.

Клетка Купфера содержит специфические мембранные рецепторы для лигандов, включая фрагмент Fc иммуноглобулина и компонент С3b комплемента, которые играют важную роль в представлении антигена.

Клетки Купфера активируются при генерализованных инфекциях или травмах. Они специфически поглощают эндотоксин и в ответ вырабатывают ряд факторов, например фактор некроза опухоли, интерлейкины, коллагеназу и лизосомальные гидролазы. Эти факторы усиливают ощущение дискомфорта и недомогания. Токсическое действие эндотоксина, таким образом, обусловлено продуктами секреции клеток Купфера, поскольку сам по себе он нетоксичен.

Клетка Купфера секретирует также метаболиты арахидоновой кислоты, в том числе простагландины.

Клетка Купфера имеет специфические мембранные рецепторы к инсулину, глюкагону и липопротеинам. Углеводный рецептор N-ацетилгликозамина, маннозы и галактозы может служить посредником в пиноцитозе некоторых гликопротеинов, особенно лизосомальных гидролаз. Кроме того, он опосредует поглощение иммунных комплексов, содержащих IgM.

В печени плода клетки Купфера выполняют эритробластоидную функцию. Распознавание и скорость эндоцитоза клетками Купфера зависят отопсонинов, фибронектина плазмы, иммуноглобулинов и тафтсина - естественного иммуномодуляторного пептида. Эти «печёночные сита» фильтруют макромолекулы различного размера. Через них не проходят крупные, насыщенные триглицеридами хиломикроны, а более мелкие, бедные триглицеридами, но насыщенные холестерином и ретинолом остатки могут проникать в пространство Диссе. Эндотелиальные клетки несколько различаются в зависимости от расположения в дольке. При сканирующей электронной микроскопии видно, что количество фенестр может значительно уменьшаться с образованием базальной мембраны; особенно ярко эти изменения проявляются в зоне 3 у больных алкоголизмом.

Синусоидальные эндотелиальные клетки активно удаляют из кровообращения макромолекулы и мелкие частицы с помощью рецепторно-опосредованного эндоцитоза. Они несут поверхностные рецепторы к гиалуроновой кислоте (главный полисахаридный компонент соединительной ткани), хондроитинсульфату и гликопротеину, содержащему на конце маннозу, а также рецепторы типа II и III к фрагментам FcIgG и рецептор к белку, связывающему липополисахариды. Эндотелиальные клетки выполняют очистительную функцию, удаляя ферменты, повреждающие ткани, и патогенные факторы (в том числе микроорганизмы). Кроме того, они очищают кровь от разрушенного коллагена и связывают и поглощают липопротеины.

Звёздчатые клетки печени (жирозапасающие клетки, липоциты, клетки Ито). Эти клетки расположены в субэндотелиальном пространстве Диссе. Они содержат длинные выросты цитоплазмы, некоторые из которых тесно контактируют с паренхиматозными клетками, а другие достигают нескольких синусоидов, где могут участвовать в регуляции кровотока и, таким образом, влиять на портальную гипертензию. В нормальной печени эти клетки являются как бы основным местом хранения ретиноидов; морфологически это проявляется в виде жировых капель в цитоплазме. После выделения этих капель звёздчатые клетки становятся похожими на фибробласты. Они содержат актин и миозин и сокращаются при воздействии эндотелина-1 и вещества Р. При повреждении гепатоцитов звёздчатые клетки утрачивают жировые капли, пролиферируют, мигрируют в зону 3, приобретают фенотип, напоминающий фенотип миофибробластов, и вырабатывают коллаген типа I, III и IV, а также ламинин. Кроме того, они выделяют протеиназы клеточного матрикса и их ингибиторы, например тканевый ингибитор металлопротеиназ (см. главу 19) . Коллагенизация пространства Диссе приводит к снижению поступления в гепатоцит субстратов, связанных с белком.

Ямочные клетки. Это очень подвижные лимфоциты - естественные киллеры, прикреплённые к обращённой в просвет синусоида поверхности эндотелия. Их микроворсинки или псевдоподии проникают сквозь эндотелиальную выстилку, соединяясь с микроворсинками паренхиматозных клеток в пространстве Диссе. Эти клетки живут недолго и обновляются за счёт лимфоцитов циркулирующей крови, дифференцирующихся в синусоидах. В них обнаруживаются характерные гранулы и пузырьки с палочками в центре. Ямочные клетки обладают спонтанной цитотоксичностью по отношению к опухолевым и инфицированным вирусом гепатоцитам.

Взаимодействия синусоидальных клеток

Между клетками Купфера и эндотелиальными клетками, как и между клетками синусоидов и гепатоцитами, происходит сложное взаимодействие. Активация клеток Купфералипополисахаридами подавляет поглощение гиалуроновой кислоты эндотелиальными клетками. Этот эффект, возможно, опосредуется лейкотриенами. Образованные клетками синусоидов цитокины могут как стимулировать, так и подавлять пролиферацию гепатоцитов.



Основным источником эндотоксина в организме является грамотрицательная флора кишечника. В настоящее время не вызывает сомнений тот факт, что печень является основным органом, осуществляющим клиренс эндотоксина . Эн­ дотоксин захватывается в первую очередь клет­ ками Купфера (КК), взаимодействуя с мембран­ным рецептором CD 14. С рецептором может связываться как сам липополисахарид (ЛПС), так и его комплекс с липид А-связывающим бел­ ком плазмы . Взаимодействие ЛПС с макро­фагами печени запускает каскад реакций, в ос­нове которых лежат выработка и высвобожде­ние цитокинов и других биологически активных медиаторов .

Имеется много публикаций о роли макрофа­ гов печени (КК) в захвате и клиренсе бактери­ального ЛПС, однако взаимодействие эндотелия с другими мезенхимальными клетками, в част­ности, с перисинусоидальными клетками Ито, практически не изучено.

МЕТОДИКА ИССЛЕДОВАНИЯ

Белым крысам-самцам массой 200 г внутрибрюшинно в 1 мл стерильного физиологического раствора вводили высокоочищенный лиофилизированный ЛПС Е. coli штамм 0111 в дозах 0.5, 2.5, 10, 25 и 50 мг/кг. На сроках 0.5, 1, 3, 6, 12, 24, 72 ч и 1 нед под наркозом извлекали внут­ренние органы и помещали их в забуференный 10% формалин. Материал заливали в парафино­вые блоки. Срезы толщиной 5 мкм окрашивали иммуногистохимическим стрептавидин-биотиновым методом антителами к десмину , α - гладко-мышечному актину (А-ГМА) и ядерному антиге­ ну пролиферирующих клеток (PCNA , " Dako "). Десмин использовали в качестве маркера перисинусоидальных клеток Ито, А-ГМА - в качест­ ве маркера миофибробластов , PCNA - проли­ферирующих клеток. Для выявления эндотокси­на в клетках печени использовали очищенные анти- R е-гликолипидные антитела (Институт об­щей и клинической патологии КДО, Москва).

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

При дозировке 25 мг/кг и выше через 6 ч после введения ЛПС наблюдали шок со смертельным исходом. Острое воздействие ЛПС на ткань пе­чени вызывало активацию клеток Ито, которая проявлялась увеличением их количества. Число десминположительных клеток увеличивалось с 6 ч после инъекции ЛПС и достигало максимума к 48-72 ч (рис. 1, а, б).

Рис. 1. Срезы печени кры­сы, обработанные LSAB -ме-ченными антителами к десмину (а, б) и α - гладкомышечному актину (в), х400 (а, б), х200 (в).

а - до введения эндотокси­ на, единичные десминположительные клетки Ито в перипортальной зоне; б - 72 ч после введения эндотокси­на: многочисленные десминположительные клетки Ито; в - 120 ч после введения эн­ дотоксина: α - гладкомышечный актин присутствует толь­ ко в гладкомышечных клет­ ках сосудов.

Через 1 нед число десминположительных клеток снижалось, но ос­ тавалось выше контрольных показателей. При этом ни в одном случае мы не наблюдали появления А-ГМА-положительных клеток в синусои­ дах печени. Внутренним положительным контролем при окрашивании антителами к А-ГМА служило выявление гладкомышечных клеток кро­ веносных сосудов портальных трактов, содержа­щих А-ГМА (рис. 1, в). Следовательно, несмотря на увеличение количества клеток Ито, однократ­ ное воздействие Л ПС не приводит к трансформации (трансдифференцировке ) их в миофибробласты .


Рис. 2. Срезы печени крысы, обработанные LSAB -меченными ан­тителами к PCNA . а - до введения эн­дотоксина: единичные пролиферирующие гепатоциты , х200; б - 72 ч после введения эндотоксина: много­численные пролифе­рирующие гепатоциты ,х400.

Увеличение количества десминположительных клеток начиналось в пределах портальной зоны. С 6 ч до 24 ч после введения ЛПС перисинусоидальные клетки обнаруживались только вокруг портальных трактов, т.е. в 1-й зоне ацинуса . На сроках 48-72 ч, когда наблюдалось мак­ симальное количество десминположительных кле­ ток, они появлялись и в других зонах ацинуса ; тем не менее большая часть клеток Ито распо­лагалась все же перипортально .

Возможно, это связано с тем, что перипор­тально расположенные КК первыми захватывают эндотоксин, поступающий из кишечника по во­ротной вене либо из системного кровотока. Ак­тивированные КК вырабатывают широкий спектр цитокинов , которые, как предполагается, запус­кают активацию клеток Ито и трансдифференцировку их в миофибробласты . Очевидно, именно поэтому первыми на выброс цитокинов реагируют клетки Ито, расположенные вблизи активированных макрофагов печени (в 1-й зоне ацинуса ). Однако в нашем исследовании мы не наблюдали их трансдифференцировки в миофиб­робласты , и это позволяет предположить, что выделяемые КК и гепатоцитами цитокины мо­гут служить фактором, поддерживающим уже начавшийся процесс трансдифференцировки , но они, вероятно, не способны запускать его при однократном воздействии ЛПС на печень.

Усиление пролиферативной активности кле­ток также наблюдалось преимущественно в 1-й зоне ацинуса . Вероятно, это говорит о том, что все (или практически все) процессы, направлен­ные на ауто - и паракринную регуляцию межкле­точных взаимодействий, протекают в перипортальных зонах. Увеличение количества пролиферирующих клеток наблюдали с 24 ч после вве­дения ЛПС; число положительных клеток уве­личивалось вплоть до 72 ч (максимум пролифе­ративной активности, рис. 2, а, б). Пролиферировали как гепатоциты , так и синусоидные клетки. Однако окрашивание на PCNA не дает возможности идентифицировать тип пролифери рующих синусоидных клеток. По данным лите­ратуры, действие эндотоксина приводит к увели­чению количества КК . Полагают, что это про­ исходит как за счет пролиферации макрофагов печени, так и за счет миграции моноцитов издругих органов . Выбрасываемые КК цитоки­ны могут повышать пролиферативную способ­ность клеток Ито. Поэтому логично предполо­жить, что пролиферирующие клетки представле­ны перисинусоидальными клетками Ито. Заре­гистрированное нами увеличение их числа необ­ходимо, по-видимому, для повышения синтеза ростовых факторов и восстановления межкле­точного матрикса в условиях повреждения. Это может быть одним из звеньев компенсаторно-восстановительных реакций печени, поскольку клетки Ито являются основным источником компонентов межклеточного матрикса, фактора стволовых клеток и фактора роста гепатоцитов , которые участвуют в репарации и дифференцировке эпителиальных клеток печени . Отсутст­ вие же трансформации клеток Ито в миофибро­бласты свидетельствует о том, что одного эпизо­да эндотоксиновой агрессии недостаточно для развития фиброза печени.

Таким образом, острое воздействие эндоток­сина вызывает увеличение числа десминположи­тельных клеток Ито, что является косвенным признаком повреждения печени. Количество перисинусоидальных клеток возрастает, видимо, в результате их пролиферации. Однократный эпи­зод эндотоксиновой агрессии вызывает обрати­мую активацию перисинусоидальных клеток Ито и не приводит к их трансдифференцировке в миофибробласты . В связи с этим можно пред­положить, что в механизмах активации и транс­дифференцировки клеток Ито задействованы не только эндотоксин и цитокины , но и какие-то иные факторы межклеточных взаимодействий.

ЛИТЕРАТУРА

1. Маянский Д.Н., Виссе Э., Декер К. // Новые рубежи гепатологии . Новосибирск, 1992.

2. Салахов И.М., Ипатов А.И., Конев Ю.В., Яков­лев М.Ю. // Успехи соврем, биол. 1998. Т. 118, Вып . 1. С. 33-49.

3. Яковлев М.Ю. // Казан. м ед. журн. 1988. № 5. С. 353-358.

4. Freudenberg N ., Piotraschke J ., Galanos C . et al . // Virchows Arch . [ B ]. 1992. Vol . 61. P . 343-349.

5. Gressner A . M . // Hepatogastronterology . 1996. Vol. 43. P. 92-103.

6. Schmidt C, Bladt F., Goedecke S. et al. // Nature. 1995. Vol. 373, N 6516. P. 699-702.

7. Wisse E., Braet F., Luo D. et al. // Toxicol . Pathol . 1996. Vol. 24, N 1. P. 100-111.

Intercellular communication might be realized by paracrine secretion and direct cell-to-cell contacts. It is known that hepatic perisinusoidal cells (HPC) establish regional stem cells niche and determine their differentiation. At the same time HPC remain poorly characterized on molecular and cellular level.

The aim of project was to study interactions between rat hepatic perisinusoidal cells and various stem cells such as mononuclear cell fraction of human umbilical cord blood (UCB-MC) and rat bone-marrow derived multipotential mesenchymal stromal cells (BM-MMSC).

Materials and methods. Rat BM-MSC and HPC, human UCB-MC cells were derived using standard techniques. To study HPC paracrine regulation we co-cultured UCB-MC or BM-MMSC cells with HPC using Boyden chambers and conditioned HPC cells media. Differentially labeled cells were co-cultured and their interactions were observed by phase-contrast fluorescent microscopy and immunocytochemistry.

Results. During the first week of cultivation there was autofluorescence of vitamin A because of fat-storing ability of PHC. BM-MMSC demonstrated high viability in all co-culture models. After 2 day incubation in conditioned media co-culture of BM-MMSC with HPC we observed changes in morphology of MMSC - they decreased in size and their sprouts became shorter. The expression of α-Smooth Muscle Actin and desmin was similar to myofibroblast - an intermediate form of Ito cells culture in vitro. These changes could be due to paracrine stimulation by HPC. The most profound effect of HPC on UCB-MC cells was observed in contact co-culture, thereby it is important for UCB-MC cells to create direct cell-to-cell contacts for maintaining their viability. We did not observe any cell fusion between HPC /UCB and HPC /BM-MMSC cells in co-cultures. In our further experiments we plan to study growth factors produced by HPC for hepatic differentiation of stem cells.

Введение.

Особый интерес среди многообразия клеток печени представляют перисинусоидальные клетки печени (клетки Ито) . Благодаря секреции факторов роста и компонентов межклеточного матрикса они создают микроокружение гепатоцитов, а в ряде научных исследований была показана способность звездчатых клеток печени к формированию микроокружения для прогениторных клеток (в том числе, гемопоэтических) и влиять на их дифференцировку в гепатоциты. Межклеточные взаимодействия этих популяций клеток могут осуществляться путем паракринной секреции факторов роста или непосредственных межклеточных контактов, однако молекулярные и клеточные основы этих процессов остаются до конца неизученными.

Цель исследования.

Изучение механизмов взаимодействия клеток Ито с гемопоэтическими (ГСК) и мезенхимальными (ММСК) стволовыми клетками в условиях in vitro.

Материалы и методы.

Клетки Ито печени крыс выделены двумя различными ферментативными методами. Одновременно из костного мозга крыс получены стромальные ММСК. Мононуклеарная фракция гемопоэтических стволовых клеток выделена из пуповинной крови человека. Паракринные влияния клеток Ито были исследованы при культивировании ММСК и ГСК в среде, в которой росли клетки Ито, и при совместном культивировании клеток, разделённых полупроницаемой мембраной. Влияние межклеточных контактов было изучено при совместном ко-культивировании клеток. Для лучшей визуализации каждая популяция была мечена индивидуальной флуоресцентной меткой. Морфологию клеток оценивали методами фазово-контрастной и флуоресцентной микроскопии. Фенотипические признаки культивируемых клеток изучали методами иммуноцитохимического анализа.

Результаты.

В течение недели после выделения перисинусоидальных клеток нами отмечена способность их к аутофлюоресценции благодаря жиронакапливающей способности. Далее клетки перешли в промежуточную фазу своего роста и приобрели звёздчатую форму. На начальных этапах ко-культивирования клеток Ито с ММСК костного мозга крысы жизнеспособность ММСК сохранялась во всех вариантах культивирования. На вторые сутки при культивировании ММСК в культуральной среде клеток Ито происходило изменение морфологии ММСК - они уменьшались в размерах, отростки укорачивались. Экспрессия альфа-гладкомышечного актина и десмина в ММСК увеличивалась, что свидетельствовало об их фенотипическом сходстве с миофибробластами - промежуточной стадией роста активированных клеток Ито in vitro. Полученные нами данные свидетельствуют о влиянии паракринных факторов, выделяемых клетками Ито, на свойства ММСК в культуре.

На основании ко-культивирования кроветворных стволовых клеток с клетками Ито показано, что гемопоэтические стволовые клетки сохраняют жизнеспособность только при контактном ко-культивировании с клетками Ито. По данным флуоресцентного анализа смешанных культур феномен слияния клеток разных популяций выявлен не был.

Выводы. Для сохранения жизнеспособности кроветворных стволовых клеток решающим фактором является наличие непосредственных межклеточных контактов с клетками Ито. Паракринная регуляция была отмечена только при культивировании ММСК в питательной среде, в которой росли клетки Ито. Изучение влияния конкретных факторов, вырабатываемых клетками Ито, на дифференцировку ГСК и ММСК в культуре клеток планируется провести в следующих исследованиях.

Шафигуллина А.К., Трондин А.А., Шайхутдинова А.Р., Калигин М.С., Газизов И.М., Ризванов А.А., Гумерова А.А., Киясов А.П.
ГОУ ВПО «Казанский Государственный Медицинский Университет Федерального агентства по здравоохранению и социальному развитию»

Вверху - схематическое изображение клетки Ито (HSC) по соседству с ближайшими гепатоцитами (PC), ниже синусоидальных эпителиальных клеток печени (EC). S - синусоид печени; KC - клетка Купфера. Внизу слева - клетки Ито в культуре под световым микроскопом. Внизу справа - электронная микроскопия позволяет разглядеть многочисленные жировые вакуоли (L) клеток Ито (HSC), в которых хранятся ретиноиды.

Клетки Ито (синонимы: звёздчатая клетка печени , жирозапасающая клетка , липоцит , англ. Hepatic Stellate Cell, HSC, Cell of Ito, Ito cell ) - перициты , содержащиеся в , способные функционировать в двух различных состояниях - спокойном и активированном . Активированные клетки Ито играют главную роль в - формировании рубцовой ткани при повреждениях печени .

В неповрежденной печени, звёздчатые клетки находятся в спокойном состоянии . В таком состоянии клетки имеют несколько выростов, охватывающих синусоидный капилляр . Другой отличительной чертой клеток является присутствие в их цитоплазме запасов витамина А (ретиноида) в форме жировых капель. Спокойные клетки Ито составляют 5-8 % численности всех клеток печени.

Выросты клеток Ито подразделяются на два типа: перисинусоидальные (субэндотелиальные) и интергепатоцеллюлярные . Первые выходят из тела клетки и простираются вдоль поверхности синусоидного капилляра , охватывая его тонкими пальцеобразными ответвлениями. Перисинусоидальные выросты покрыты короткими ворсинками и имеют характерные длинные микровыбросы, простирающиеся ещё дальше по поверхности эндотелиальной трубки капилляра. Интергепатоцеллюлярные выросты, преодолев пластинку гепатоцитов и достигнув соседнего синусоида, делятся на несколько перисинусоидальных выростов. Таким образом, клетка Ито в среднем охватывает чуть больше двух соседних синусоидов.

При повреждении печени клетки Ито переходят в активированное состояние . Активированный фенотип характеризуется пролиферацией, хемотаксисом , сокращаемостью, потерей запасов ретиноида и образованием клеток, напоминающих миофибробластные . Активированные звёздчатые клетки печени также демонстрируют повышенное содержание новых генов , таких как, ICAM-1 , хемокины и цитокины . Активация свидетельствует о начале ранней стадии фиброгенеза и предшествует повышенному продуцированию ЕСМ -белков. Финальная стадия заживления печени характеризуется усиленным апоптозом активированных клеток Ито, вследствие чего их количество резко сокращается.

Для визуализации клеток Ито при микроскопии применяется окрашивание хлоридом золота . Установлено также, что надёжным маркером для дифференциации этих клеток от других миофибробластов является экспрессия ими белка рилин .

История [ | ]

В 1876 году Карл Фон Купфер описал клетки, названные им «Sternzellen» (звёздчатые клетки). При окрашивании оксидом золота, в цитоплазме клеток были заметны включения. Ошибочно сочтя их фрагментами эритроцитов, захваченных путём фагоцитоза, Купфер в 1898 году пересмотрел свои взгляды о «звёздчатой клетке» как об отдельном типе клеток и отнес их в разряд фагоцитов . Однако в последующие годы регулярно появлялись описания клеток, похожих на Купферовские «звёздчатые клетки». Им присваивались различные названия: интерстициальные клетки, парасинусоидные клетки, липоциты, перициты. Роль этих клеток оставалась загадкой на протяжении 75 лет, пока профессор (Toshio Ito) не обнаружил в перисинусоидальном пространстве печени человека некие клетки, содержащие вкрапления жира. Ито назвал их «shibo-sesshu saibo» - жиропоглощающие клетки. Поняв, что вкрапления были жиром, выработанным клетками из гликогена , он сменил название на «shibo-chozo saibo» - жирозапасающие клетки. В