Предел где x стремится к бесконечности. Теория пределов

При вычислении пределов следует учитывать следующие основные правила :

1. Предел суммы (разности) функций равен сумме (разности) пределов слагаемых:

2. Предел произведения функций равен произведению пределов сомножителей:

3. Предел отношения двух функций равен отношению пределов этих функций:

.

4. Постоянный множитель можно выносить за знак предела:

.

5. Предел постоянной равен самой постоянной:

6. Для непрерывных функций символы предела и функции можно поменять местами:

.

Нахождение предела функции следует начинать с подстановки значения в выражение для функции. При этом если получается числовое значение 0 или ¥, то искомый предел найден.

Пример 2.1. Вычислить предел .

Решение.

.

Выражения вида , , , , , называются неопределённостями .

Если получается неопределенность вида , то для нахождения предела нужно преобразовать функцию так, чтобы раскрыть эту неопределенность.

Неопределенность вида обычно получается, когда задан предел отношения двух многочленов. В этом случае, для вычисления предела рекомендуется разложить многочлены на множители и сократить на общий множитель. Этот множитель равен нулю при предельном значении х .

Пример 2.2. Вычислить предел .

Решение.

Подставляя , получим неопределенность:

.

Разложим числитель и знаменатель на множители:

;

Сократим на общий множитель и получим

Неопределенность вида получается, когда задан предел отношения двух многочленов при . В этом случае для вычисления рекомендуется разделить оба многочлена на х в старшей степени.

Пример 2.3. Вычислить предел .

Решение. При подстановке ∞ получается неопределенность вида , поэтому разделим все члены выражения на x 3 .

.

Здесь учитывается, что .

При вычислении пределов функции, содержащей корни, рекомендуется умножить и разделить функцию на сопряженное выражение.

Пример 2.4. Вычислить предел

Решение.

При вычислении пределов для раскрытия неопределенности вида или (1) ∞ часто используются первый и второй замечательные пределы:



Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример.

Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед.

Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3) 3 »237 (ден. ед.).

Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

100 × (1 +1/10) 10 » 259 (ден. ед.),

100 × (1+1/100) 100 » 270 (ден. ед.),

100 × (1+1/1000) 1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что

Пример 2.5. Вычислить предел функции

Решение.

Пример 2.6. Вычислить предел функции .

Решение. Подставляя получим неопределенность:

.

Используя тригонометрическую формулу, преобразуем числитель в произведение:

В результате получаем

Здесь учитывается второй замечательный предел .

Пример 2.7. Вычислить предел функции

Решение.

.

Для раскрытия неопределенности вида или можно использовать правило Лопиталя, которое основано на следующей теореме.

Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных

Заметим, что это правило можно применять несколько раз подряд.

Пример 2.8. Найти

Решение. При подстановке , имеем неопределенность вида . Применяя правило Лопиталя, получим

Непрерывность функции

Важным свойством функции является непрерывность.

Определение. Функция считается непрерывной , если малое изменение значения аргумента влечет за собой малое изменение значения функции.

Математически это записывается так: при

Под и понимается приращение переменных, то есть разность между последующим и предыдущим значениями: , (рисунок 2.3)

Рисунок 2.3 – Приращение переменных

Из определения функции , непрерывной в точке , следует, что . Это равенство означает выполнение трех условий:

Решение. Для функции точка является подозрительной на разрыв, проверим это, найдем односторонние пределы

Следовательно, , значит - точка устранимого разрыва


Производная функции

Рассмотрим на показательных примерах.

Пусть х – числовая переменная величина, Х – область ее изменения. Если каждому числу х, принадлежащему Х, поставлено в соответствие некоторое число у, то говорят, что на множестве Х определена функция, и записывают у = f(x).
Множество Х в данном случае – плоскость, состоящая из двух координатных осей – 0X и 0Y. Для примера изобразим функцию у = х 2 . Оси 0X и 0Y образуют Х – область ее изменения. На рисунке прекрасно видно, как ведет себя функция. В таком случае говорят, что на множестве Х определена функция у = х 2 .

Совокупность Y всех частных значений функции называется множеством значений f(x). Другими словами, множество значений – это промежуток по оси 0Y, где определена функция. Изображенная парабола явно показывает, что f(x) > 0 , т.к. x2 > 0. Поэтому область значений будет . Множество значений смотрим по 0Y.

Совокупность всех х называется областью определения f(x). Множество определений смотрим по 0X и в нашем случае областью допустимых значений является [-; +].

Точка а (а принадлежит или Х) называется предельной точкой множества Х, если в любой окрестности точки а имеются точки множества Х, отличные от а.

Пришла пора понять – что же такое предел функции?

Чисто b, к которому стремится функция при стремлении х к числу а, называется пределом функции . Записывается это следующим образом:

Например, f(x) = х 2 . Нам надо узнать, к чему стремится (не равна) функция при х 2. Сначала запишем предел:

Посмотрим на график.

Проведем параллельно оси 0Y линию через точку 2 на оси 0X. Она пересечет наш график в точке (2;4). Опустим из этой точки на ось 0Y перпендикуляр – и попадем в точку 4. Вот к чему стремится наша функция при х 2. Если теперь подставить в функцию f(x) значение 2, то ответ будет таким же.

Теперь прежде чем перейти к вычислению пределов , введем базовые определения.

Введено французским математиком Огюстеном Луи Коши в XIX веке.

Допустим, функция f(x) определена на некотором интервале, в котором содержится точка x = A, однако совсем не обязательно, чтобы значение f(А) было определено.

Тогда, согласно определению Коши, пределом функции f(x) будет некое число B при x, стремящимся к А, если для каждого C > 0 найдется число D > 0, при котором

Т.е. если функция f(x) при x А ограничена пределом В, это записывается в виде

Пределом последовательности называется некое число А, если для любого сколь угодно малого положительного числа В > 0 найдется такое число N, при котором все значения в случае n > N удовлетворяют неравенству

Такой предел имеет вид .

Последовательность, у которой есть предел, будем называть сходящейся, если нет - расходящейся.

Как Вы уже заметили, пределы обозначаются значком lim, под которым записывается некоторое условие для переменной, и далее уже записывается сама функция. Такой набор будет читаться, как «предел функции при условии…». Например:

- предел функции при х, стремящимся к 1.

Выражение «стремящимся к 1» означает, что х последовательно принимает такие значения, которые бесконечно близко приближаются к 1.

Теперь становится ясно, что для вычисления данного предела достаточно подставить вместо х значение 1:

Кроме конкретного числового значения х может стремиться и к бесконечности. Например:

Выражение х означает, что х постоянно возрастает и неограниченно близко приближается к бесконечности. Поэтому подставив вместо х бесконечность станет очевидно, что функция 1- х будет стремиться к , но с обратным знаком:

Таким образом, вычисление пределов сводится к нахождению его конкретного значения либо определенной области, в которую попадает функция, ограниченная пределом.

Исходя из вышеизложенного следует, что при вычислении пределов важно пользоваться несколькими правилами:

Понимая сущность предела и основные правила вычисления пределов , вы получите ключевое представление о том, как их решать. Если какой предел будет вызывать у вас затруднения, то пишите в комментарии и мы обязательно вам поможем.

Заметка: Юриспруденция - наука о законах, помогающее в конфлитных и других жизненных трудностях.

Этот математический калькулятор онлайн поможет вам если нужно вычислить предел функции . Программа решения пределов не просто даёт ответ задачи, она приводит подробное решение с пояснениями , т.е. отображает процесс вычисления предела.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Введите выражение функции
Вычислить предел

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Предел функции при х->х 0

Пусть функция f(x) определена на некотором множестве X и пусть точка \(x_0 \in X \) или \(x_0 \notin X \)

Возьмем из X последовательность точек, отличных от х 0:
x 1 , x 2 , x 3 , ..., x n , ... (1)
сходящуюся к х*. Значения функции в точках этой последовательности также образуют числовую последовательность
f(x 1), f(x 2), f(x 3), ..., f(x n), ... (2)
и можно ставить вопрос о существовании ее предела.

Определение . Число А называется пределом функции f(х) в точке х = х 0 (или при х -> x 0), если для любой сходящейся к x 0 последовательности (1) значений аргумента x, отличных от x 0 соответствующая последовательность (2) значений функции сходится к числу A.


$$ \lim_{x\to x_0}{ f(x)} = A $$

Функция f(x) может иметь в точке x 0 только один предел. Это следует из того, что последовательность
{f(x n)} имеет только один предел.

Существует другое определение предела функции.

Определение Число А называется пределом функции f(x) в точке х = x 0 , если для любого числа \(\varepsilon > 0 \) существует число \(\delta > 0 \) такое, что для всех \(x \in X, \; x \neq x_0 \), удовлетворяющих неравенству \(|x-x_0| Используя логические символы, это определение можно записать в виде
\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x \in X, \; x \neq x_0, \; |x-x_0| Отметим, что неравенства \(x \neq x_0, \; |x-x_0| Первое определение основано на понятии предела числовой последовательности, поэтому его часто называют определением «на языке последовательностей». Второе определение называют определением «на языке \(\varepsilon - \delta \)».
Эти два определения предела функции эквивалентны и можно использовать любое из них в зависимости от того, какое более удобно при решении той или иной задачи.

Заметим, что определение предела функции «на языке последовательностей» называют также определением предела функции по Гейне, а определение предела функции «на языке \(\varepsilon - \delta \)» - определением предела функции по Коши.

Предел функции при x->x 0 - и при x->x 0 +

В дальнейшем будут использованы понятия односторонних пределов функции, которые определяются следующим образом.

Определение Число А называется правым (левым) пределом функции f(x) в точке x 0 , если для любой сходящейся к x 0 последовательности (1), элементы x n которой больше (меньше) x 0 , соответствующая последовательность (2) сходится к А.

Символически это записывается так:
$$ \lim_{x \to x_0+} f(x) = A \; \left(\lim_{x \to x_0-} f(x) = A \right) $$

Можно дать равносильное определение односторонних пределов функции «на языке \(\varepsilon - \delta \)»:

Определение число А называется правым (левым) пределом функции f(х) в точке x 0 , если для любого \(\varepsilon > 0 \) существует \(\delta > 0 \) такое, что для всех x, удовлетворяющих неравенствам \(x_0 Символические записи:

\((\forall \varepsilon > 0) (\exists \delta > 0) (\forall x, \; x_0

Пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции, так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a , то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A , к которому стремится функция при х , стремящемся к определенной точке а . Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

Lim - от английского limit - предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача - найти предел.

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

Кстати, если Вас интересуют , читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х . Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность . Что делать в таких случаях? Прибегать к хитростям!


Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.


Кстати! Для наших читателей сейчас действует скидка 10% на

Еще один вид неопределенностей: 0/0

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

Сократим и получим:

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Налицо типичная неопределенность 0/0 . Возьмем производные от числителя и знаменателя:

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.