Тепловые электростанции (ТЭЦ, КЭС): разновидности, типы, принцип работы, топливо. Организационно-производственная структура атомных электростанций

Что такое и каковы же принципы работы ТЭС? Общее определение таких объектов звучит примерно следующим образом - это энергетические установки, которые занимаются переработкой природной энергии в электрическую. Для этих целей также используется топливо природного происхождения.

Принцип работы ТЭС. Краткое описание

На сегодняшний день наибольшее распространение получили именно На таких объектах сжигается которое выделяет тепловую энергию. Задача ТЭС - использовать эту энергию, чтобы получить электрическую.

Принцип работы ТЭС - это выработка не только но и производство тепловой энергии, которая также поставляется потребителям в виде горячей воды, к примеру. Кроме того, эти объекты энергетики вырабатывают около 76% всей электроэнергии. Такое широкое распространение обусловлено тем, что доступность органического топлива для работы станции довольно велико. Второй причиной стало то, что транспортировка топлива от места его добычи к самой станции - это довольно простая и налаженная операция. Принцип работы ТЭС построен так, что имеется возможность использовать отработавшее тепло рабочего тела для вторичной поставки его потребителю.

Разделение станций по типу

Стоит отметить, что тепловые станции могут делиться на типы в зависимости от того, какой именно они производят. Если принцип работы ТЭС заключается лишь в производстве электрической энергии (то есть тепловая энергия не поставляет потребителю), то ее называют конденсационной (КЭС).

Объекты, предназначенные для производства электрической энергии, для отпуска пара, а также поставки горячей воды потребителю, имеют вместо конденсационных турбин паровые. Также в таких элементах станции имеется промежуточный отбор пара или же устройство противодавления. Главным преимуществом и принципом работы ТЭС (ТЭЦ) такого типа стало то, что отработанный пар также используется в качестве источника тепла и поставляется потребителям. Таким образом, удается сократить потерю тепла и количество охлаждающей воды.

Основные принципы работы ТЭС

Прежде чем перейти к рассмотрению самого принципа работы, необходимо понять, о какой именно станции идет речь. Стандартное устройство таких объектов включает в себя такую систему, как промежуточный перегрев пара. Она необходима потому, что тепловая экономичность схемы с наличием промежуточного перегрева, будет выше, чем в системе, где она отсутствует. Если говорить простыми словами, принцип работы ТЭС, имеющей такую схему, будет гораздо эффективнее при одних и тех же начальных и конечных заданных параметрах, чем без нее. Из всего этого можно сделать вывод, что основа работы станции - это органическое топливо и нагретый воздух.

Схема работы

Принцип работы ТЭС построен следующим образом. Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла. В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф. Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль. Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле. В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину. Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.

Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.

Механическая часть работы станции

Устройство и принцип работы ТЭС в ее механической части связан с работой ротора. Пар, который поступает из турбины, имеет очень высокое давление и температуру. Из-за этого создается высокая внутренняя энергия пара, которая и поступает из котла в сопла турбины. Струи пара, проходя через сопло непрерывным потоком, с высокой скоростью, которая чаще всего даже выше звуковой, воздействуют на рабочие лопатки турбины. Эти элементы жестко закреплены на диске, который, в свою очередь, тесно связан с валом. В этот момент времени происходит преобразование механической энергии пара в механическую энергию турбин ротора. Если говорить точнее о принципе работы ТЭС, то механическое воздействие влияет на ротор турбогенератора. Это из-за того, что вал обычного ротора и генератора тесно связываются между собой. А далее происходит довольно известный, простой и понятный процесс преобразования механической энергии в электрическую в таком устройстве, как генератор.

Движение пара после ротора

После того как водяной пар проходит турбину, его давление и температура значительно опускаются, и он поступает в следующую часть станции - конденсатор. Внутри этого элемента происходит обратное превращение пара в жидкость. Для выполнения этой задачи внутри конденсатора имеется охлаждающая вода, которая поступает туда посредством труб, проходящих внутри стен устройства. После обратного преобразования пара в воду, она откачивается конденсатным насосом и поступает в следующий отсек - деаэратор. Также важно отметить, что откачиваемая вода, проходит сквозь регенеративные подогреватели.

Основная задача деаэратора - это удаление газов из поступающей воды. Одновременно с операцией очистки, осуществляется и подогрев жидкости так же, как и в регенеративных подогревателях. Для этой цели используется тепло пара, которое отбирается из того, что следует в турбину. Основное предназначение операции деаэрации состоит в том, чтобы понизить содержание кислорода и углекислого газа в жидкости до допустимых значений. Это помогает снизить скорость влияние коррозии на тракты, по которым идет поставка воды и пара.

Станции на угле

Наблюдается высокая зависимость принципа работы ТЭС от вида топлива, которое используется. С технологической точки зрения наиболее сложным в реализации веществом является уголь. Несмотря на это, сырье является основным источником питания на таких объектах, число которых примерно 30% от общей доли станций. К тому же планируется увеличивать количество таких объектов. Также стоит отметить, что количество функциональных отсеков, необходимых для работы станции, гораздо больше, чем у других видов.

Как работают ТЭС на угольном топливе

Для того чтобы станция работала непрерывно, по железнодорожным путям постоянно привозят уголь, который разгружается при помощи специальных разгрузочных устройств. Далее имеются такие элементы, как по которым разгруженный уголь подается на склад. Далее топливо поступает в дробильную установку. При необходимости есть возможность миновать процесс поставки угля на склад, и передавать его сразу к дробилкам с разгрузочных устройств. После прохождения этого этапа раздробленное сырье поступает в бункер сырого угля. Следующий шаг - это поставка материала через питатели в пылеугольные мельницы. Далее угольная пыль, используя пневматический способ транспортировки, подается в бункер угольной пыли. Проходя этот путь, вещество минует такие элементы, как сепаратор и циклон, а из бункера уже поступает через питатели непосредственно к горелкам. Воздух, проходящий сквозь циклон, засасывается мельничным вентилятором, после чего подается в топочную камеру котла.

Далее движение газа выглядит примерно следующим образом. Летучее вещество, образовавшееся в камере топочного котла, проходит последовательно такие устройства, как газоходы котельной установки, далее, если используется система промежуточного перегрева пара, газ подается в первичный и вторичный пароперегреватель. В этом отсеке, а также в водяном экономайзере газ отдает свое тепло на разогрев рабочего тела. Далее установлен элемент, называющийся воздухоперегревателем. Здесь тепловая энергия газа используется для подогрева поступающего воздуха. После прохождения всех этих элементов, летучее вещество переходит в золоуловитель, где очищается от золы. После этого дымовые насосы вытягивают газ наружу и выбрасывают его в атмосферу, использую для этого газовую трубу.

ТЭС и АЭС

Довольно часто возникает вопрос о том, что общего между тепловыми и и есть ли сходство в принципах работы ТЭС и АЭС.

Если говорить об их сходстве, то их несколько. Во-первых, обе они построены таким образом, что для своей работы используют природный ресурс, являющийся ископаемым и иссекаемым. Кроме этого, можно отметить, что оба объекта направлены на то, чтобы вырабатывать не только электрическую энергию, но и тепловую. Сходства в принципах работы также заключаются и в том, что ТЭС и АЭС имеют турбины и парогенераторы, участвующие в процессе работы. Далее имеются лишь некоторые отличие. К ним можно отнести то, что, к примеру, стоимость строительства и электроэнергии, полученной от ТЭС гораздо ниже, чем от АЭС. Но, с другой стороны, атомные станции не загрязняют атмосферу до тех пор, пока отходы утилизируются правильным образом и не происходит аварий. В то время как ТЭС из-за своего принципа работы постоянно выбрасывают в атмосферу вредные вещества.

Здесь кроется и главное отличие в работе АЭС и ТЭС. Если в тепловых объектах тепловая энергия от сжигания топлива передается чаще всего воде или преобразуется в пар, то на атомных станциях энергию берут от деления атомов урана. Полученная энергия расходится для нагрева самых разных веществ и вода здесь используется довольно редко. К тому же все вещества находятся в закрытых герметичных контурах.

Теплофикация

На некоторых ТЭС в их схемах может быть предусмотрена такая система, которая занимается теплофикацией самой электростанции, а также прилегающего поселка, если таковой имеется. К сетевым подогревателям этой установки, пар отбирается от турбины, а также имеется специальная линия для отвода конденсата. Вода подводится и отводится по специальной системе трубопровода. Та электрическая энергия, которая будет вырабатываться таким образом, отводится от электрического генератора и передается потребителю, проходя через повышающие трансформаторы.

Основное оборудование

Если говорить об основных элементах, эксплуатирующихся на тепловых электрических станциях, то это котельные, а также турбинные установки в паре с электрическим генератором и конденсатором. Основным отличием основного оборудования от дополнительного стало то, что оно имеет стандартные параметры по своей мощности, производительности, по параметрам пара, а также по напряжению и силе тока и т. д. Также можно отметить, что тип и количество основных элементов выбираются в зависимости от того, какую мощность необходимо получить от одной ТЭС, а также от режима ее эксплуатации. Анимация принципа работы ТЭС может помочь разобраться в этом вопросе более детально.

ОРГАНИЗАЦИОННО-ПРОИЗВОДСТВЕННАЯ СТРУКТУРА ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ (ТЭС)

В зависимости от мощности оборудования и схем технологических связей между стадиями производства на современных ТЭС различают цеховую, бесцеховую и блочно-цеховую организационно-производственные структуры.

Цеховая организационно-производственная структура предусматривает деление технологического оборудования и территории ТЭС на отдельные участки и закрепление их за специализированными подразделениями – цехами, лабораториями. В этом случае основной структурной единицей является цех. Цехи в зависимости от их участия в производстве разделяют на основные и вспомогательные. Кроме того ТЭС могут иметь в своем составе и непромышленные хозяйства (жилищное и подсобное хозяйства, детские сады, дома отдыха санатории и т.д.).

Основные цеха принимают непосредственное участие в производстве энергии. К ним относят топливно-транспортный, котельный, турбинный, электрический и химический цехи.

В состав топливно-транспортного цеха включают участки железнодорожного хозяйства и топливоподачи со складом топлива. Этот цех организуют на электростанциях, которые сжигают твердое топливо или мазут при его доставке железнодорожным транспортом.

В состав котельного цеха включают участки подачи жидкого или газообразного топлива, пылеприготовление, золоудаление.

В турбинный цех входят: теплофикационное отделение, центральная насосная и водное хозяйство.

При двухцеховой производственной структуре, а также на крупных ТЭС котельный и турбинный цехи объединяют в единый котлотурбинный цех (КТЦ).

В ведении электрического цеха находятся: все электрическое оборудование ТЭС, электротехническая лаборатория, масляное хозяйство, электроремонтная мастерская.

Химический цех включает в себя химическую лабораторию и химическую водоочистку.

Вспомогательные цехи обслуживают основное производство. К ним относят: цех централизованного ремонта, ремонтно-строительный, тепловой автоматики и связи.

Непромышленные хозяйства непосредственно не связаны с производством энергии и обслуживают бытовые нужды работников ТЭС.

Бесцеховая организационно-производственная структура предусматривает специализацию подразделений на выполнении основных производственных функций: эксплуатация оборудования, его ремонтного обслуживания, технологического контроля. Это обуславливает создание вместо цехов производственных служб: эксплуатации, ремонтов, контроля и усовершенствования оборудования. В свою очередь, производственные службы делятся на специализированные участки.

Создание блочно-цеховой организационно-производственной структуры обусловлено появлением комплексных энергетических агрегатов-блоков. Оборудование блока осуществляет несколько фаз энергетического процесса – сжигание топлива в парогенераторе, производство электроэнергии в турбогенераторе, а иногда и ее преобразование в трансформаторе. В отличие от цеховой при блочно-цеховой структуре основным производственным подразделением электростанции являются блоки. Их включают в состав КТЦ, которые занимаются централизованной эксплуатацией основного и вспомогательного оборудования котлотурбинных блоков. Блочно-цеховая структура предусматривает сохранение основных и вспомогательных цехов, имеющих место при цеховой структуре, например топливно-транспортный цех (ТТЦ), химический и др.

Все типы организационно-производственной структуры предусматривают осуществление управления производством на основе единоначалия. На каждой ТЭС существует административно-хозяйственное, производственно-техническое и оперативно-диспетчерское управление.

Административно-хозяйственным руководителем ТЭС является директор, техническим ру4ководителем – главный инженер. Оперативно-диспетчерское управление осуществляет дежурный инженер электростанции. В оперативном отношении он подчинен дежурному диспетчеру ЭЭС.

Наименование и количество структурных подразделений, и необходимость введения отдельных должностей определяют в зависимости от нормативной численности промышленно-производственного персонала электростанции.

Указанные технологические и организационно-экономические особенности электроэнергетического производства сказываются на содержании и задачах управления деятельностью энергетических предприятий и объединений.

Главное требование, которое предъявляется к электроэнергетики, – это надежное и бесперебойное энергоснабжение потребителей, покрытие требуемого графика нагрузки. Это требование трансформируется в специфические показатели, которыми оценивается участие электростанции и сетевых предприятий в выполнении производственной программы энергообъединений.

Для электростанции устанавливается готовность к несению нагрузки, которая задается диспетчерским графиком. Для сетевых предприятий устанавливается график ремонтов оборудования и сооружений. В плане задаются и другие технико-экономические показатели: удельные расходы топлива на электростанциях, снижение потерь энергии в сетях, финансовые показатели. Однако производственная программа энергетических предприятий не может быть жестко определенна объемом производства или отпуска электрической энергии и теплоты. Это нецелесообразно из-за исключительной динамичности потребления и соответственно производства энергии.

Тем не менее, объем производства энергии является важным расчетным показателем, который определяет уровень многих других показателей (например, себестоимости) и результаты хозяйственной деятельности.

Энергию, скрытую в органическом топливе - угле, нефти или природном газе, невозможно сразу получить в виде электричества. Топливо сначала сжигают. Выделившаяся теплота нагревает воду, превращает её в пар. Пар вращает турбину , а турбина - ротор генератора , который генерирует, т. е. вырабатывает, электрический ток.

Схема работы конденсационной электростанции.

Славянская ТЭС. Украина, Донецкая область.

Весь этот сложный, многоступенчатый процесс можно наблюдать на тепловой электрической станции (ТЭС), оборудованной энергетическими машинами, преобразующими энергию, скрытую в органическом топливе (горючих сланцах, угле, нефти и продуктах её переработки, природном газе), в электрическую энергию. Основные части ТЭС - котельная установка, паровая турбина и электрогенератор.

Котельная установка - комплекс устройств для получения водяного пара под давлением. Она состоит из топки, в которой сжигается органическое топливо, топочного пространства, по которому продукты горения проходят в дымовую трубу, и парового котла, в котором кипит вода. Часть котла, во время нагрева соприкасающаяся с пламенем, называется поверхностью нагрева.

Котлы бывают 3 типов: дымогарные, водотрубные и прямоточные. Внутри дымогарных котлов помещен ряд трубок, по которым продукты горения проходят в дымовую трубу. Многочисленные дымогарные трубки имеют огромную поверхность нагрева, вследствие чего в них хорошо используется энергия топлива. Вода в этих котлах находится между дымогарными трубками.

В водотрубных котлах - все наоборот: по трубкам пускают воду, а между трубками горячие газы. Основные части котла - топка, кипятильные трубки, паровой котел и пароперегреватель. В кипятильных трубках идет процесс парообразования. Образующийся в них пар поступает в паровой котел, где и собирается в верхней его части, над кипящей водой. Из парового котла пар проходит в пароперегреватель и там дополнительно нагревается. Топливо в этот котел забрасывают через дверцу, а воздух, необходимый для горения топлива, подают через другую дверцу в поддувало. Горячие газы поднимаются вверх и, огибая перегородки, проходят путь, указанный на схеме (см. рис.).

В прямоточных котлах воду нагревают в длинных трубах-змеевиках. Вода подается в эти трубы насосом . Проходя через змеевик, она полностью испаряется, а образовавшийся пар перегревается до требуемой температуры и затем выходит из змеевиков.

Котельные установки, работающие с промежуточным перегревом пара, являются составной частью установки, называемой энергоблоком «котел - турбина».

В перспективе, например, для использования угля Канско-Ачинского бассейна будут сооружены крупные тепловые электростанции мощностью до 6400 МВт с энергетическими блоками по 800 МВт, где котельные установки будут вырабатывать 2650 т пара в 1 ч с температурой до 565 °C и давлением 25 МПа.

Котельная установка вырабатывает пар высокого давления, который идет в паровую турбину - главный двигатель тепловой электростанции. В турбине пар расширяется, давление его падает, а скрытая энергия преобразуется в механическую. Паровая турбина приводит в движение ротор генератора, вырабатывающего электрический ток.

В крупных городах чаще всего строят теплоэлектроцентрали (ТЭЦ), а в районах с дешевым топливом - конденсационные электростанции (КЭС).

ТЭЦ - это тепловая электростанция, вырабатывающая не только электрическую энергию, но и теплоту в виде горячей воды и пара. Пар, покидающий паровую турбину, содержит в себе еще много тепловой энергии. На ТЭЦ эту теплоту используют двояко: либо пар после турбины направляется потребителю и обратно на станцию не возвращается, либо он передает теплоту в теплообменнике воде, которая направляется потребителю, а пар возвращается обратно в систему. Поэтому ТЭЦ имеет высокий КПД, достигающий 50–60%.

Различают ТЭЦ отопительного и промышленного типов. Отопительные ТЭЦ обогревают жилые и общественные здания и снабжают их горячей водой, промышленные - снабжают теплотой промышенные предприятия. Передача пара от ТЭЦ осуществляется на расстояния до нескольких километров, а передача горячей воды - до 30 и более километров. Вследствие этого теплоэлектроцентрали строятся неподалеку от крупных городов.

Огромное количество тепловой энергии направляется на теплофикацию или централизованное отопление наших квартир, школ, учреждений. До Октябрьской революции централизованного теплоснабжения домов не было. Дома отапливались печами, в которых сжигалось много дров и угля. Теплофикаций в нашей стране началась в первые годы советской власти, когда по плану ГОЭЛРО (1920 г.) приступили к строительству крупных ТЭС. Суммарная мощность ТЭЦ в начале 1980‑х гг. превысила 50 млн кВт.

Но основная доля электроэнергии, которую вырабатывают тепловые электростанции, приходится на конденсационные электростанции (КЭС). У нас их чаще называют государственными районными электрическими станциями (ГРЭС). В отличие от ТЭЦ, где теплота отработанного в турбине пара используется для отопления жилых и производственных зданий, на КЭС отработанный в двигателях (паровых машинах, турбинах) пар превращается конденсаторами в воду (конденсат), направляемую обратно в котлы для повторного использования. КЭС сооружаются непосредственно у источников водоснабжения: у озера, реки, моря. Теплота, выводимая из электростанции с охлаждающей водой, безвозвратно теряется. КПД КЭС не превышает 35–42%.

На высокую эстакаду день и ночь по строгому графику подают вагоны с мелко раздробленным углем. Особый разгрузчик опрокидывает вагоны, и топливо ссыпается в бункер. Мельницы тщательно размалывают его в топливный порошок, и он вместе с воздухом влетает в топку парового котла. Языки пламени плотно охватывают пучки трубок, вода в которых закипает. Образуется водяной пар. По трубам - паропроводам - пар направляется к турбине и через сопла бьет в лопатки ротора турбины. Отдав энергию ротору, отработанный пар идет в конденсатор, охлаждается и превращается в воду. Насосы подают её обратно в котел. А энергия продолжает свое движение от ротора турбины к ротору генератора. В генераторе происходит её последнее превращение: она становится электричеством. На этом заканчивается энергетическая цепочка КЭС.

В отличие от ГЭС тепловые электростанции можно построить в любом месте, а тем самым приблизить источники получения электроэнергии к потребителю и расположить тепловые электростанции равномерно по территории экономических районов страны. Преимущество ТЭС состоит и в том, что они работают практически на всех видах органического топлива - углях, сланцах, жидком топливе, природном газе.

К крупнейшим конденсационным ТЭС в относятся Рефтинская (Свердловская область), Запорожская (Украина), Костромская, Углегорская (Донецкая область, Украина). Мощность каждой из них превышает 3000 МВт.

Наша страна - пионер строительства тепловых электростанций, энергию которым дает атомный реактор (см.

На тепловых электростанциях люди получают практически всю необходимую энергию на планете. Люди научились получать электрический ток иным образом, но все еще не принимают альтернативные варианты. Пусть им невыгодно использовать топливо, они не отказываются от него.

В чем секрет тепловых электростанций?

Тепловые электростанции неслучайно остаются незаменимыми. Их турбина вырабатывает энергию простейшим способом, используя горение. За счет этого удается минимизировать расходы на строительство, считающиеся полностью оправданными. Во всех странах мира находятся такие объекты, поэтому можно не удивляться распространению.

Принцип работы тепловых электростанций построен на сжигании огромных объемов топлива. В результате этого появляется электроэнергия, которая сначала аккумулируется, а потом распространяется по определенным регионам. Схемы тепловых электростанций почти остаются постоянными.

Какое топливо используется на станции?

Каждая станция использует отдельное топливо. Оно специально поставляется, чтобы не нарушался рабочий процесс. Этот момент остается одним из проблематичных, так как появляются транспортные расходы. Какие виды использует оборудование?

  • Уголь;
  • Горючие сланцы;
  • Торф;
  • Мазут;
  • Природный газ.

Тепловые схемы тепловых электростанций строятся на определенном виде топлива. Причем в них вносятся незначительные изменения, обеспечивающие максимальный коэффициент полезного действия. Если их не сделать, основной расход будет чрезмерным, поэтому не оправдает полученный электрический ток.

Типы тепловых электростанций

Типы тепловых электростанций - важный вопрос. Ответ на него расскажет, каким образом появляется необходимая энергия. Сегодня постепенно вносятся серьезные изменения, где главным источником окажутся альтернативные виды, но пока их применение остается нецелесообразным.

  1. Конденсационные (КЭС);
  2. Теплоэлектроцентрали (ТЭЦ);
  3. Государственные районные электростанции (ГРЭС).

Электростанция ТЭС потребует подробного описания. Виды различны, поэтому только рассмотрение объяснит, почему осуществляется строительство такого масштаба.

Конденсационные (КЭС)

Виды тепловых электростанций начинаются с конденсационных. Такие ТЭЦ применяются исключительно для выработки электроэнергии. Чаще всего она аккумулируется, сразу не распространяясь. Конденсационный метод обеспечивает максимальный КПД, поэтому подобные принципы считаются оптимальными. Сегодня во всех странах выделяют отдельных объекты крупного масштаба, обеспечивающие обширные регионы.

Постепенно появляются атомные установки, заменяющие традиционное топливо. Только замена остается дорогостоящим и длительным процессом, так как работа на органическом топливе отличается от иных способов. Причем отключение ни одной станции невозможно, ведь в таких ситуациях целые области остаются без ценной электроэнергии.

Теплоэлектроцентрали (ТЭЦ)

ТЭЦ используются сразу для нескольких целей. В первую очередь они используются для получения ценной электроэнергии, но сжигание топлива также остается полезным для выработки тепла. За счет этого теплофикационные электростанции продолжают применяться на практике.


Важной особенностью является том, что такие тепловые электростанции виды другие превосходят относительно небольшой мощностью. Они обеспечивают отдельные районы, поэтому нет необходимости в объемных поставках. Практика показывает, насколько выгодно такое решение из-за прокладки дополнительных линий электропередач. Принцип работы современной ТЭС является ненужной только из-за экологии.

Государственные районные электростанции

Общие сведения о современных тепловых электростанциях не отмечают ГРЭС. Постепенно они остаются на заднем плане, теряя свою актуальность. Хотя государственные районные электростанции остаются полезными с точки зрения объемов выработки энергии.

Разные виды тепловых электростанций дают поддержку обширным регионам, но все равно их мощность недостаточна. Во времена СССР осуществлялись крупномасштабные проекты, которые сейчас закрываются. Причиной стало нецелесообразное использование топлива. Хотя их замена остается проблематичной, так как преимущества и недостатки современных ТЭС в первую очередь отмечают большие объемы энергии.

Какие электростанции являются тепловыми? Их принцип построен на сжигании топлива. Они остаются незаменимыми, хотя активно ведутся подсчеты по равнозначной замене. Тепловые электростанции преимущества и недостатки продолжают подтверждать на практике. Из-за чего их работа остается необходимой.

Электроэнергию производят на электростанциях за счет использования энергии, скрытой в различных природных ресурсах. Как видно из табл. 1.2 это происходит в основном на тепловых (ТЭС) и атомных электростанциях (АЭС), работающих по тепловому циклу.

Типы тепловых электростанций

По виду генерируемой и отпускаемой энергии тепловые электростанции разделяют на два основных типа: конденсационные (КЭС), предназначенные только для производства электроэнергии, и теплофикационные, или теплоэлектроцентрали (ТЭЦ). Конденсационные электрические станции, работающие на органическом топливе, строят вблизи мест его добычи, а теплоэлектроцентрали размещают вблизи потребителей тепла – промышленных предприятий и жилых массивов. ТЭЦ также работают на органическом топливе, но в отличие от КЭС вырабатывают как электрическую, так и тепловую энергию в виде горячей воды и пара для производственных и теплофикационных целей. К основным видам топлива этих электростанций относятся: твердое – каменные угли, антрацит, полуантрацит, бурые угли, торф, сланцы; жидкое – мазут и газообразное – природный, коксовый, доменный и т.п. газ.

Таблица 1.2. Выработка электроэнергии в мире

Показатель

2010 г. (прогноз)

Доля общей выработки по электростанциям, % АЭС

ТЭС на газе

ТЭС на мазуте

Выработка электроэнергии по регионам, %

Западная Европа

Восточная Европа Азия и Австралия Америка

Средний Восток и Африка

Установленная мощность электростанций в мире (всего), ГВт

В том числе, % АЭС

ТЭС на газе

ТЭС на мазуте

ТЭС на угле и прочих видах топлива

ГЭС и ЭС на других, возобновляемых, видах топлива

Выработка электроэнергии (суммарная),

млрд. кВт·ч


Атомные электростанции преимущественно конденсационного типа используют энергию ядерного топлива.

В зависимости от типа теплосиловой установки для привода электрогенератора электростанции подразделяются на паротурбинные (ПТУ), газотурбинные (ГТУ), парогазовые (ПГУ) и электростанции с двигателями внутреннего сгорания (ДЭС).

В зависимости от длительности работы ТЭС в течение года по покрытию графиков энергетических нагрузок, характеризующихся числом часов использования установленной мощностиτ у ст , электростанции принято классифицировать на: базовые (τ у ст > 6000 ч/год); полупиковые (τ у ст = 2000 – 5000 ч/год); пиковые (τ у ст < 2000 ч/год).

Базовыми называют электростанции, несущие максимально возможную постоянную нагрузку в течение большей части года. В мировой энергетике в качестве базовых используют АЭС, высокоэкономические КЭС, а также ТЭЦ при работе по тепловому графику. Пиковые нагрузки покрывают ГЭС, ГАЭС, ГТУ, обладающие маневренностью и мобильностью, т.е. быстрым пуском и остановкой. Пиковые электростанции включаются в часы, когда требуется покрыть пиковую часть суточного графика электрической нагрузки. Полупиковые электростанции при уменьшении общей электрической нагрузки либо переводятся на пониженную мощность, либо выводятся в резерв.

По технологической структуре тепловые электростанции подразделяются на блочные и неблочные. При блочной схеме основное и вспомогательное оборудование паротурбинной установки не имеет технологических связей с оборудованием другой установки электростанции. Для электростанций на органическом топливе при этом к каждой турбине пар подводится от одного или двух соединенных с ней котлов. При неблочной схеме ТЭС пар от всех котлов поступает в общую магистраль и оттуда распределяется по отдельным турбинам.



На конденсационных электростанциях, входящих в крупные энергосистемы, применяются только блочные системы с промежуточным перегревом пара. Неблочные схемы с поперечными связями по пару и воде применяются без промежуточного перегрева.

Принцип работы и основные энергетические характеристики тепловых электростанций

Электроэнергию на электростанциях производят за счет использования энергии, скрытой в различных природных ресурсах (уголь, газ, нефть, мазут, уран и др.), по достаточно простому принципу, реализовывая технологию преобразования энергии. Общая схема ТЭС (см. рис. 1.1) отражает последовательность такого преобразования одних видов энергии в другие и использования рабочего тела (вода, пар) в цикле тепловой электростанции. Топливо (в данном случае уголь) сгорает в котле, нагревает воду и превращает ее в пар. Пар подается в турбины, преобразующие тепловую энергию пара в механическую энергию и приводящие в действие генераторы, вырабатывающие электроэнергию (см. раздел 4.1).

Современная тепловая электростанция – это сложное предприятие, включающее большое количество различного оборудования. Состав оборудования электростанции зависит от выбранной тепловой схемы, вида используемого топлива и типа системы водоснабжения.

Основное оборудование электростанции включает: котельные и турбинные агрегаты с электрическим генератором и конденсатором. Эти агрегаты стандартизованы по мощности, параметрам пара, производительности, напряжению и силе тока и т.д. Тип и количество основного оборудования тепловой электростанции соответствуют заданной мощности и предусмотренному режиму её работы. Существует и вспомогательное оборудование, служащее для отпуска теплоты потребителям и использования пара турбины для подогрева питательной воды котлов и обеспечения собственных нужд электростанции. К нему относится оборудование систем топливоснабжения, деаэрационно-питательной установки, конденсационной установки, теплофикационной установки (для ТЭЦ), систем технического водоснабжения, маслоснабжения, регенеративного подогрева питательной воды, химводоподготовки, распределения и передачи электроэнергии (см. раздел 4).

На всех паротурбинных установках применяется регенеративный подогрев питательной воды, существенно повышающий тепловую и общую экономичность электростанции, поскольку в схемах с регенеративным подогревом потоки пара, отводимые из турбины в регенеративные подогреватели, совершают работу без потерь в холодном источнике (конденсаторе). При этом для одной и той же электрической мощности турбогенератора расход пара в конденсаторе снижается и в результате к.п.д. установки растет.

Тип применяемого парового котла (см. раздел 2) зависит от вида топлива, используемого на электростанции. Для наиболее распространённых топлив (ископаемые угли, газ, мазут, фрезторф) применяются котлы с П-, Т-образной и башенной компоновкой и топочной камерой, разработанной применительно к тому или иному виду топлива. Для топлив с легкоплавкой золой используются котлы с жидким шлакоудалением. При этом достигается высокое (до 90%) улавливание золы в топке и снижается абразивный износ поверхностей нагрева. Из этих же соображений для высокозольных топлив, таких как сланцы и отходы углеобогащения, применяются паровые котлы с четырехходовой компоновкой. На тепловых электростанциях используются, как правило, котлы барабанной или прямоточной конструкции.

Турбины и электрогенераторы согласуются по шкале мощности. Каждой турбине соответствует определенный тип генератора. Для блочных тепловых конденсационных электростанций мощность турбин соответствует мощности блоков, а число блоков определяется заданной мощностью электростанции. В современных блоках используются конденсационные турбины мощностью 150, 200, 300, 500, 800 и 1200 МВт с промежуточным перегревом пара.

На ТЭЦ применяются турбины (см. подраздел 4.2) с противодавлением (типа Р), с конденсацией и производственным отбором пара (типа П), с конденсацией и одним или двумя теплофикационными отборами (типа Т), а также с конденсацией, промышленным и теплофикационными отборами пара (типа ПТ). Турбины типа ПТ также могут иметь один или два теплофикационных отбора. Выбор типа турбины зависит от величины и соотношения тепловых нагрузок. Если преобладает отопительная нагрузка, то в дополнение к турбинам ПТ могут быть установлены турбины типа Т с теплофикационными отборами, а при преобладании промышленной нагрузки – турбины типов ПР и Р с промышленным отбором и противодавлением.

В настоящее время на ТЭЦ наибольшее распространение имеют установки электрической мощностью 100 и 50 МВт, работающие на начальных параметрах 12,7 МПа, 540–560°С. Для ТЭЦ крупных городов созданы установки электрической мощностью 175–185 МВт и 250 МВт (с турбиной Т-250-240). Установки с турбинами Т-250-240 являются блочными и работают при сверхкритических начальных параметрах (23,5 МПа, 540/540°С).

Особенностью работы электрических станций в сети является то, что общее количество электрической энергии, вырабатываемой ими в каждый момент времени, должно полностью соответствовать потребляемой энергии. Основная часть электрических станций работает параллельно в объединенной энергетической системе, покрывая общую электрическую нагрузку системы, а ТЭЦ одновременно и тепловую нагрузку своего района. Есть электростанции местного значения, предназначенные для обслуживания района и не подсоединенные к общей энергосистеме.

Графическое изображение зависимости электропотребления во времени называютграфиком электрической нагрузки . Суточные графики электрической нагрузки (рис.1.5) меняются в зависимости от времени года, дня недели и характеризуются обычно минимальной нагрузкой в ночной период и максимальной нагрузкой в часы пик (пиковая часть графика). Наряду с суточными графиками большое значение имеют годовые графики электрической нагрузки (рис. 1.6), которые строятся по данным суточных графиков.

Графики электрических нагрузок используются при планировании электрических нагрузок электростанций и систем, распределении нагрузок между отдельными электростанциями и агрегатами, в расчетах по выбору состава рабочего и резервного оборудования, определении требуемой установленной мощности и необходимого резерва, числа и единичной мощности агрегатов, при разработке планов ремонта оборудования и определении ремонтного резерва и др.

При работе с полной нагрузкой оборудование электростанции развивает номинальную или максимально длительную мощность (производительность), которая является основной паспортной характеристикой агрегата. На этой наибольшей мощности (производительности) агрегат должен длительно работать при номинальных значениях основных параметров. Одной из основных характеристик электростанции является ее установленная мощность, которая определяется как сумма номинальных мощностей всех электрогенераторов и теплофикационного оборудования с учетом резерва.

Работа электростанции характеризуется также числом часов использования установленной мощности , которое зависит от того, в каком режиме работает электростанция. Для электростанций, несущих базовую нагрузку, число часов использования установленной мощности составляет 6000–7500 ч/год, а для работающих в режиме покрытия пиковых нагрузок – менее 2000–3000 ч/год.

Нагрузку, при которой агрегат работает с наибольшим к.п.д., называют экономической нагрузкой. Номинальная длительная нагрузка может быть равна экономической. Иногда возможна кратковременная работа оборудования с нагрузкой на 10–20% выше номинальной при более низком к.п.д. Если оборудование электростанции устойчиво работает с расчетной нагрузкой при номинальных значениях основных параметров или при изменении их в допустимых пределах, то такой режим называется стационарным.

Режимы работы с установившимися нагрузками, но отличающимися от расчетных, или с неустановившимися нагрузками называют нестационарными или переменными режимами. При переменных режимах одни параметры остаются неизменными и имеют номинальные значения, другие – изменяются в определенных допустимых пределах. Так, при частичной нагрузке блока давление и температура пара перед турбиной могут оставаться номинальными, в то время как вакуум в конденсаторе и параметры пара в отборах изменятся пропорционально нагрузке. Возможны также нестационарные режимы, когда изменяются все основные параметры. Такие режимы имеют место, например, при пуске и остановке оборудования, сбросе и набросе нагрузки на турбогенераторе, при работе на скользящих параметрах и называются нестационарными.

Тепловая нагрузка электростанции используется для технологических процессов и промышленных установок, для отопления и вентиляции производственных, жилых и общественных зданий, кондиционирования воздуха и бытовых нужд. Для производственных целей обычно требуется пар давлением от 0,15 до 1,6 МПа. Однако, чтобы уменьшить потери при транспортировке и избежать необходимости непрерывного дренирования воды из коммуникаций, с электростанции пар отпускают несколько перегретым. На отопление, вентиляцию и бытовые нужды ТЭЦ подает обычно горячую воду с температурой от 70 до 180°С.

Тепловая нагрузка, определяемая расходом тепла на производственные процессы и бытовые нужды (горячее водоснабжение), зависит от наружной температуры воздуха. В условиях Украины летом эта нагрузка (так же как и электрическая) меньше зимней. Промышленная и бытовая тепловые нагрузки изменяются в течение суток, кроме того, среднесуточная тепловая нагрузка электростанции, расходуемая на бытовые нужды, меняется в рабочие и выходные дни. Типичные графики изменения суточной тепловой нагрузки промышленных предприятий и горячего водоснабжения жилого района приведены на рис 1.7 и 1.8.

Эффективность работы ТЭС характеризуется различными технико-экономическими показателями, одни из которых оценивают совершенство тепловых процессов (к.п.д., расходы теплоты и топлива), а другие характеризуют условия, в которых работает ТЭС. Например, на рис. 1.9 (а ,б ) приведены примерные тепловые балансы ТЭЦ и КЭС.

Как видно из рисунков, комбинированная выработка электрической и тепловой энергии обеспечивает значительное повышение тепловой экономичности электростанций благодаря уменьшению потерь теплоты в конденсаторах турбин.

Наиболее важными и полными показателями работы ТЭС являются себестоимости электроэнергии и теплоты.

Тепловые электростанции имеют как преимущества, так и недостатки в сравнении с другими типами электростанций. Можно указать следующие достоинства ТЭС:

  • относительно свободное территориальное размещение, связанное с широким распространением топливных ресурсов;
  • способность (в отличие от ГЭС) вырабатывать энергию без сезонных колебаний мощности;
  • площади отчуждения и вывода из хозяйственного оборота земли под сооружение и эксплуатацию ТЭС, как правило, значительно меньше, чем это необходимо для АЭС и ГЭС;
  • ТЭС сооружаются гораздо быстрее, чем ГЭС или АЭС, а их удельная стоимость на единицу установленной мощности ниже по сравнению с АЭС.
  • В то же время ТЭС обладают крупными недостатками:
  • для эксплуатации ТЭС обычно требуется гораздо больше персонала, чем для ГЭС, что связано с обслуживанием весьма масштабного по объему топливного цикла;
  • работа ТЭС зависит от поставок топливных ресурсов (уголь, мазут, газ, торф, горючие сланцы);
  • переменность режимов работы ТЭС снижают эффективность, повышают расход топлива и приводят к повышенному износу оборудования;
  • существующие ТЭС характеризуются относительно низким к.п.д. (в основном до 40%);
  • ТЭС оказывают прямое и неблагоприятное воздействие на окружающую среду и не являются эколигически «чистыми» источниками электроэнергии.
  • Наибольший ущерб экологии окружающих регионов приносят электростанции, работающие на угле, особенно высокозольном. Среди ТЭС наиболее «чистыми» являются станции, использующие в своем технологическом процессе природный газ.

По оценкам экспертов, ТЭС всего мира выбрасывают в атмосферу ежегодно около 200–250 млн. тонн золы, более 60 млн. тонн сернистого ангидрида, большое количество оксидов азота и углекислого газа (вызывающего так называемый парниковый эффект и приводящего к долгосрочным глобальным климатическим изменениям), поглощая большое количество кислорода. Кроме того, к настоящему времени установлено, что избыточный радиационный фон вокруг тепловых электростанций, работающих на угле, в среднем в мире в 100 раз выше, чем вблизи АЭС такой же мощности (уголь в качестве микропримесей почти всегда содержит уран, торий и радиоактивный изотоп углерода). Тем не менее, хорошо отработанные технологии строительства, оборудования и эксплуатации ТЭС, а также меньшая стоимость их сооружения приводят к тому, что на ТЭС приходится основная часть мирового производства электроэнергии. По этой причине совершенствованию технологий ТЭС и снижению отрицательного влияния их на окружающую среду во всем мире уделяется большое внимание (см. раздел 6).