Олово (Tin) - это.

Как известно, олово является компонентом бронзы. Существуют, правда, бронзы мышьяковистые, где вместо олова, легирующей добавкой, повышающей прочность меди, является мышьяк. Существуют бронзы, в которых для этих же целей вместо олова используется свинец. Однако, как в древности, так и в настоящее время, в основном, используются бронзы оловянистые, о которых и пойдет речь в последующем изложении.. Таким образом, чтобы выплавить бронзу, кроме меди, нужно олово.

Основным минералом для получения олова является оловянный камень - касситерит, который химически представляет собой двуокись олова. Олово из касситерита легко получить при помощи восстановления в печи при недостатке кислорода, что легко достигается добавлением в шихту древесного угля. Эта технология, несомненно, была доступна древним металлургам. Аналогичным способом получали и получают железо из широко распространенных в природе оксидов железа.

Основные месторождения касситерита в настоящее время находятся в Малайзии, Таиланде, Боливии, Индонезии, КНР, Нигерии, Якутии и Забайкалье. С точки зрения древних металлургов Малой Азии, Кавказа и Европы эти месторождения касситерита находятся у «черта на куличиках» и, конечно, были им недоступны. Правда существуют в настоящее время месторождения олова и в Европе - в Богемии и в Корнуолле. Однако, самым первым изобретателям бронзы они тоже, вряд ли, были доступны. В Богемии касситерит в настоящее время добывают из достаточно глубоко залегающих гранитов и древним рудокопам он был недоступен. Корнуолл находится на острове и тоже далеко от первых центров металлургии Бронзового века - Малой Азии, Кавказа, Центральной и Южной Европы. Возникает вопрос - а откуда же древние могли получать олово для выплавки бронзы, если в Старом Свете оно отсутствует или присутствует, но в недоступных для древних людей местах? Загадка!

Ниспровергатели истории дают такой ответ на эту загадку- Бронзового века не было. Это все выдумки официальной истории. По их мнению бронзу научились делать только в XVII веке, когда касситерит стали добывать, взрывая горную породу или доставлять морем из дальних стран. До того времени, когда порох начали применять в горном деле, или до развития мореплавания, когда касситерит стало возможно доставлять в Европу морем, ни о каком использовании в Европе касситерита-оловянного камня говорить не приходится. В общем дурит нашего брата официальная история. Не было никакого Древнего Мира (см. Новая Хронология) и никакого Бронзового века.

Попробую дать свой ответ на эту Загадку.

Для этого придется немного погрузиться в геологию, чтобы понять, где встречается в природе оловянный камень - касситерит.
Обратимся к горной энциклопедии http://enc-dic.com/enc_rock/Kassiterit-1264.html
«Наиболее крупные скопления Касситерита связаны с высокотемпературными грейзеновыми и гидротермальными месторождениями.... Во многих гранитах Касситерит. присутствует в качестве акцессорного минерала (малой примеси)…. Сильно изменённые каолинизированные оловоносные граниты представляют промышленный интерес.»
Здесь нужно некоторое пояснение про грейзеновые месторождения. Читаем в Вики:
«Грейзен - метасоматическая горная порода, состоящая в основном из кварца и светлых слюд (лепидолита, мусковита), часто содержит ценные рудные минералы в виде вкраплённости (касситерит, вольфрамит, танталит и др.). Грейзен - ведущий поисковый признак на месторождения руд редких металлов и цветных камней (топаза, берилла и др.).
Грейзены образуются при температуре 400-500 градусов Цельсия, и связаны с изменения гранитных пород под действием газов и растворов, отделяющихся от охлаждающихся гранитных тел». То есть, грейзены образуются из гранитов.
Таким образом, месторождения касситерита связаны с гранитами - самой широко распространенной горной породой. «Граниты - визитная карточка Земли».
Опять загадка! Гранитов в Европе, в Малой Азии, в Иране, на Кавказе полным полно, а касситерита - оловянного камня очень мало. А если и есть, то залегает в гранитах глубоко под землей.
А что же представляют собой разрабатываемые в настоящее время месторождения касситерита? Информация об этом имеется, например в работе геолога Эдварда Эрлиха "Минеральные месторождения в истории человечества"
http://www.port-folio.org/2005/part215.htm
Читаем: «Как и во многих других горнорудных провинциях, добыча начиналась с разработки россыпей (россыпи и в наши дни поставляют 80% мировой добычи олова). Лишь позже, по мере выработки россыпей, в средние века перешли к отработке индивидуальных жил, пронизывающих граниты и вмещающие их породы. »
В другой популярной книге - Розен Б. Я. «Соперник серебра.» - М.: Металлургия, 1984.
читаем:
«В начале своего знакомства с оловом древние люди добывали оловянную руду из россыпей, преимущественно в речных наносах. В те времена им были уже знакомы россыпное золото и техника его отмывки от речного песка. Позднее стали добывать олово из глубоко залегающей оловянной руды.
Добывали руды открытым способом. В открытых выработках делали перемычки (целики), защищавшие рудокопов от завалов и гибели под обломками, хотя и нередко бывали несчастные случаи. До сих пор при археологических раскопках древних выработок в Сибири, Казахстане, на Алтае и других местах на территории нашей страны и во многих странах, где уже в бронзовом веке добывали медь и олово (в Англии, Китае и Перу), находят скелеты погибших горняков.
В подземных штольнях также оставляли целики для защиты от возможных обвалов. Но это были уже столбы или колонны, выложенные из породы, которые поддерживали свод штольни. Такие крепления встречаются во многих древних выработках, где добывали медь и олово. Нередко подобные подпорки складывали из каменных плит или глыб, а в местах, где было много леса, часто использовали деревянные столбики. В те далекие времена в подземные галереи спускались по вырубленным в породе ступеням или деревянным лестницам. Чаще всего это были бревна с зарубками или же деревья с обрубленными толстыми сучьями. На Урале, в одном из древних рудников, была найдена такая лестница. По таким примитивным лестницам рудокопы не только спускались в штольни и выработки, но и поднимали руду в корытах, кожаных сумках, плетеных корзинах.»
http://tapemark.narod.ru/olovo/index.html

Таким образом, геологи нам говорят, что касситерит и в настоящее время добывается, в основном, из россыпей - из речных наносов, а не из коренных пород. Речные наносы и россыпи, так сложилось в геологии, называются аллювиальными. Они являются результатом выноса реками горных пород, которые были разрушены в результате эрозии. В аллювиальных россыпях находят многие ценные минералы и драгоценные металлы, в то числе золото. В том числе и оловянный камень - касситерит. Чем древнее горы, тем больше они подвержены эрозии и тем толще аллювиальные отложения. Древние горы - Урал, Карпаты, Татры, Рудные горы в Центральной Европе всегда были источником ценных минералов и драгоценных металлов - золота и серебра. И, если золота, серебра, оловянного камня там сейчас осталось мало, то это не означает, что их никогда там и не было. Они там были, но их не стало в результате интенсивной добычи. Во времена Бронзового века касситерит, медные руды и леса были стратегическими материалами, примерно такими же, как и в средние века алюмокалиевые квасцы, необходимые для получения пороха или сейчас, например, уран, необходимый для ядерного оружия.
Отсутствие касситерита в россыпях в тех местах, где процветали цивилизации Бронзового века означает лишь то, что его вымели там подчистую. И, если оловянный камень и сохранился на поверхности в настоящее время, это означает лишь то, что в древности эти места были захолустьем мировой цивилизации.
Ситуация с касситеритом в современности аналогична с ситуацией с лесами. В центрах цивилизаций Бронзового века, например, на Кипре и в Греции лесов в настоящее время нет. Леса там были уничтожены в результате использования в металлургии, поскольку для восстановления металлов из оксидов необходим древесный уголь.
В той же работе Эдварда Эрлиха "Минеральные месторождения в истории человечества" читаем:
«Важнейшим элементом производства металла было топливо, в частности, древесный уголь. Массовая дефорестация (уничтожение лесов) восточного Средиземноморья началась к 1200 году до н. э., по-видимому, сначала в сухих районах. Во всяком случае, уже законы Хаммурапи (1750 лет до н. э) налагали высокий штраф за вырубку лесов. По реконструкции современных археологов, производство рудниками Лавриона в Аттике трех с половиной тысяч тонн серебра и 1.4 миллиона тонн свинца на протяжении 300 лет сопровождалось уничтожением 2.5 миллиона акров леса. Разработка рудников Лавриона была приостановлена не из-за исчерпания запасов руды и не потому, что выработка опустилась ниже уровня подземных вод, а из-за того, что стоимость «горючего» для производствам металла - леса -делала рудники убыточными. По словам Платона, район вокруг Афин когда-то он был покрыт густым лесом. Ныне же это - кожа и кости прежней Аттики. Именно металлургия привела и к полному уничтожению растительности Кипра, также некогда покрытого густыми лесами. По свидетельству Эратосфена, до начала интенсивной разработки меди леса на Кипре были так густы, что их вырубка поощрялась. »

Таким образом, мне представляется, что очередной «открытие» ниспровергателей истории можно смело считать закрытым. Бронзовый век был и, именно, деятельность человека в это время и привела, как к уничтожению лесов в Восточном Средиземноморье, так и к полному исчезновению оловянного камня из россыпей в Южной и Центральной Европе и на Ближнем Востоке.

P.S. Интересно, что такую же судьбу имеют и месторождения малахита, который являлся одним из основных минералов для выплавки меди. В настоящее время малахит остался в Конго и в небольшом количестве на Урале. На Ближнем Востоке и в Южной Европе, где в свое время процветали цивилизации Бронзового века, малахита нет. Однако, так было не всегда. Археологи раскопали в древних неолитических слоях в поселениях Малой Азии (VI-VII тысячелетия до н.э.) куски малахита вместе с кусками меди и древесного угля, что говорит о существовании там металлургии меди.
см. Вяч.Вс. Иванов "История славянских и балканских названий металлов"

Вероятнее всего, месторождения малахита в этих местах были также выработаны для получения меди еще в древности.

P.P.S. В работе Эдварда Эрлиха "Минеральные месторождения в истории человечества" про добычу олова на Ближнем Востоке на заре Бронзового века сказано следующее:
"Олово было редким металлом, как правило, его надо было завозить. Пожалуй, первыми оловянными бронзами были бронзы Анатолии, связанные с добычей олова из месторождений Киликии и Тавроса. ... здесь разрабатывалось около 40 месторождений олова. При этом главным минералом - источником олова здесь был, скорее всего, сульфид меди, железа и олова - станнин (Сu2FeSnS4). Большое поселение Кёльтепе производило олово в период с 3290 до 1840 года до н. э. (2) Караваны ослов доставляли металл к потребителю. Около 2350 года до н. э. аккадский царь Саргон пишет о том, что один караван нес около 12 тонн олова. Этого было достаточно, чтобы выплавить 125 тонн бронзы и вооружить значительную армию изделиями из нее. После падения Аккада грузы доставлялись ассирийскими купцами из Ашшура, в нынешнем северном Ираке, в район медных месторождений Кёльтепе в сегодняшней Турции к располагавшимся там металлургическим центрам. Общий вес доставляемого за год олова был существенно выше тонны, а этого хватало для изготовления 10-15 тонн бронзы в год. Имперские государства, такие, как Ассирия и Минойская империя, делали все от них зависящее, чтобы охранять торговлю оловом.
Производство бронзы на душу населения было невелико и зависело от наличия добываемых или закупаемых сырьевых ресурсов. В Вавилонии оно достигло 300 граммов, а в Египте - 50 граммов в год на душу населения."

Рецензии

Вроде бы всё верно, но есть вопросы...первое - у людей должны быть определённые знания о том, что например в медь надо добавить олово и будет вам бронза, а олово надо получить из касситерита путём восстановительной плавки в печи в смеси с древесным углём, при этом температура плавления касситерита 1400 град по Цельсию! Кроме того, необходимо учесть, что ни добывать руду ни рубить деревья не возможно без стального инструмента, именно стального а не железного! А что бы получить качественный стальной инструмент нудно сделать следующее - удалить из расплава железа серу и фосфор (что не возможно в примитивной сыродутной печи), довести содержание углерода до 0,8-1,2%, далее провести термообработку инструмента(закалку и низкий отпуск для получения мартенситной микроструктуры) и в конце произвести заточку инструмента скажем на наждаке из корунда, и только этого можно будет рубить деревья и добывать руду! Да, и кстати для восстановления железа из его оксида опять нужен древесный уголь, т.е. необходимо срочно рубить деревья, но у нас нет стального инструмента! Вопросов больше чем ответов!

Как ни странно, кое-какие инструменты из железа, изготовленные в середине I тысячелетия до нашей эры, сохранились до наших дней и сделаны они были из стали неплохого качества.

В древности железо, действительно, плавить не умели. Как удаляли вредные примеси не знаю, но подумаю на эту тему.

Ежедневная аудитория портала Проза.ру - порядка 100 тысяч посетителей, которые в общей сумме просматривают более полумиллиона страниц по данным счетчика посещаемости, который расположен справа от этого текста. В каждой графе указано по две цифры: количество просмотров и количество посетителей.

Другая история науки. От Аристотеля до Ньютона Калюжный Дмитрий Витальевич

Олово и оловянная бронза = Sn

Олово и оловянная бронза = Sn

Оловянная бронза, то есть медь, в которой основным легирующим элементом было олово, постепенно стала вытеснять медно-мышьяковые сплавы. Появление оловянной бронзы ознаменовало начало новой эпохи в истории человечества, которая определена как бронзовый век. Медно-оловянные предметы находят в памятниках бронзового века на огромном пространстве всего Старого света.

Присадка олова к меди, начиная с минимальных долей процента, улучшает ее литейные качества, но изменяет пластичность сплава. Бронзы, содержащие до 5 % олова, допускают ковку и волочение вхолодную, при большем же содержании олова такая обработка возможна только вгорячую. С повышением содержания олова хрупкость бронзы увеличивается; бронзы, содержащие до 30 % олова, дробятся под молотком.

Небольшая добавка олова к меди незначительно понижает ее точку плавления, например медь с 5 % олова плавится при 1050 °C, с 10 % – при 1005 °C, с 15 % – при 960 °C. В древности из-за дороговизны олова, которое в большинстве стран было привозным и доставлялось нерегулярно, плавильщики заменяли его полностью или частично другими легирующими металлами: мышьяком, сурьмой, свинцом, никелем, а позднее и цинком. Поэтому состав древних оловянных бронз разнороден. Повышенные примеси металлов, кроме олова, объясняются также химическим составом медных руд, использованных плавильщиками, и в некоторых случаях переплавкой с медью лома бронзовых изделий.

Однако распространение оловянной бронзы ставит немало проблем. Неизвестно происхождение олова – как входившего в состав древней бронзы, так и использовавшегося самостоятельно. Последовательность открытия оловянной бронзы и олова также остается пока невыясненной. Можно было бы предположить, что до получения оловянной бронзы человек научился выплавлять олово из его руды, касситерита (SnO 2), тем более, что процесс выплавки не представлял трудностей, ведь температура плавления олова лишь 232 °C. Однако повсюду оловянные предметы появились либо одновременно с бронзовыми, либо позднее их.

В Европе медного века фактически не было – изделия из меди встречаются редко, однако изделия из бронзы появляются здесь внезапно и распространяются повсеместно. Это необъяснимо, как и то, что даже первые бронзовые изделия показывают высокое мастерство их создателей, возникшее без предварительных этапов. И в Юго-Восточной Азии искусство отливки появляется внезапно, словно занесенное извне.

Не говорят ли эти сообщения о том, что люди не всегда учились искусству выплавки и обработки металлов, а получали его в готовом виде? Так, искусство бронзы могло быть отработано в Египте и отсюда попало к народам всего мира. Точно так же произошло и с железом, но в этом случае, наоборот, оно было «занесено» в Египет.

Это подтверждает и поразительное сходство различных предметов, оружия из бронзы, обнаруженных археологами на территории всей Европы. Изделия до такой степени похожи друг на друга, что закрадывается подозрение, будто все они изготовлены в одной мастерской.

Сама выплавка олова из его природной двуокиси (касситерита) с древесным углем довольно проста, и выплавленный металл может быть добавлен к меди для получения бронзы. Другой вариант возможного получения бронзы – совместная плавка медных руд, предварительно смешанных с касситеритом (чистый касситерит содержит почти 80 % Sn). Следует, однако, учитывать, что совместная выплавка меди и олова в больших масштабах требовала доставки оловянных руд к местам, где находились источники меди. То есть это стало возможным только после развития средств передвижения.

Многие соображения относительно возможных источников олова в древности зачастую исходят из ошибочных и путаных сведений об олове в трудах древних и средневековых авторов. Месторождения олова по сравнению с другими металлами очень редки. Хоть и предполагалось, что установление источников олова в регионах, где расцветала металлургия, не представит затруднений, на самом деле эта проблема остается нерешенной до сих пор.

Источники олова искали в тех районах, где обнаружено много древних медно-оловянных предметов, например в Иране и на Кавказе. Однако, судя по современным геологическим исследованиям, в Иране месторождения оловянных руд отсутствуют. Металлогеническими и геохимическими методами была также установлена невероятность залегания в пределах Кавказа промышленных оловянных руд, как по запасам, так и по содержанию олова. На письменные сообщения разных авторов рассчитывать нельзя, так как свинец и олово не различали до позднего Средневековья.

Большинство известных в мире месторождений касситерита находится в Малайзии, Индонезии, Китае, Боливии, на Британских островах (на Корнуэлле), в Саксонии, Богемии, Нигерии. При этом довольно часто отмечается Богемия как один из центров снабжения оловом бронзовой металлургии. Но месторождения олова там слишком глубоко залегают в гранитах, вряд ли они были доступны древнему рудокопу.

Есть еще одна загадка. Во многих европейских языках нет различия между свинцом и оловом. По-польски олув – это свинец. И по-литовски и на языке пруссов свинец тоже называли оловом – алвас, алвис . Вся средневековая Европа путала свинец и олово, вернее и то и другое считали свинцом, только олово – белым свинцом (плюмбум альбум), а свинец – черным свинцом (плюмбум нигрум). Но для изготовления оловянной бронзы надо уметь их различать. Это еще одно указание на привнесенность бронзы в Европу.

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги 7 и 37 чудес автора Можейко Игорь

Ифе и Бенин. Бронза и глина Конец прошлого века – период окончательного раздела Африки между европейскими державами. Спеша, сталкиваясь лбами, замирая на новых границах империй при виде пушек конкурентов и разражаясь в газетных статьях «благородным» негодованием в

Из книги 7 и 37 чудес автора Можейко Игорь

Тодайдзи. Дерево, бронза и камень Культуры народов неизбежно встречаются, «обмениваются опытом», сливаются. Архитектуру и искусство развозили по свету купцы и паломники, ученые монахи и беглые солдаты… Завоеватели приносили с собой нормы красоты и заставляли

Из книги Реконструкция подлинной истории автора

Из книги Начало Ордынской Руси. После Христа.Троянская война. Основание Рима. автора Носовский Глеб Владимирович

4.4. Бронза На рис. 6.29 и рис. 6.30 представлены великолепные бронзовые воинские шлемы из так называемой «казармы гладиаторов» якобы I века н. э., обнаруженные при раскопках в Помпее. Работа высокого технологического уровня. Обратите внимание на идеально правильные отверстия

Из книги Русы Великой Скифии автора Петухов Юрий Дмитриевич

3.6. Медь, бронза и железо Индустрия металлов определяла в последние несколько тысяч лет технологический прогресс. Недаром же исторические эпохи получили название: век каменный, бронзовый, железный…Первые медные изделия появились в неолитических культурах VII–VI тыс. до

Из книги Основание Рима. Начало Ордынской Руси. После Христа. Троянская война автора Носовский Глеб Владимирович

4.4. Бронза На рис. 6.28 и рис. 6.29 представлены великолепные бронзовые воинские шлемы из так называемой «казармы гладиаторов» якобы I века н. э., обнаруженные при раскопках в Помпее. Работа высокого технологического уровня. Обратите внимание на идеально правильные отверстия

Из книги Реконструкция подлинной истории автора Носовский Глеб Владимирович

9. Олово, медь, бронза Хорошо известно, что металлургия олова сложнее, чем меди. Поэтому бронза, как сплав меди с оловом, обязана была появиться ПОЗДНЕЕ открытия олова. А в скалигеровской истории картина в точности обратная. Сначала, якобы, открыли бронзу. «Получился»

Из книги 100 великих сокровищ автора Ионина Надежда

Художественная бронза Китая В экспозиции Пекинского императорского музея большое место занимают классические образцы древней китайской бронзы XVI-III веков до нашей эры, их насчитывается в фондах музея свыше пятисот экземпляров. Техника обработки бронзы в Китае еще во

Из книги Даки [Древний народ Карпат и Дуная] автора Берчу Думитру

ФИНАЛЬНАЯ ФАЗА (БРОНЗА IV) Переход от великолепных культур фракийского бронзового века к железному веку происходил постепенно и систематически, без каких-либо разрывов или переломов. Недавние археологические исследования в Румынии полностью опровергли теорию о том, что

Из книги Грузины [Хранители святынь] автора Лэнг Дэвид

Глава 2 МЕДЬ И БРОНЗА Важный прорыв в изучении предыстории Грузии и всего Закавказья произошел в последние несколько десятилетий, когда было обнаружено большое количество находок, относящихся к «энеолитической культуре Закавказья» (Мунчаев, Пиотровский), которую

Из книги Загадки древности. Белые пятна в истории цивилизации автора Бурганский Гарий Еремеевич

МЕДЬ, БРОНЗА, ПЛАТИНА И... АЛЮМИНИЙ Вот уже почти девять тысячелетий продолжается эра металла.Греческий поэт Гесиод (около 770 до н.э.) рассказал известную легенду о четырех веках человечества: золотой, серебряный, медный и железный. Деление истории человечества на

Из книги Археология оружия. От бронзового века до эпохи Ренессанса автора Окшотт Эварт

Глава 1 «Безжалостная бронза» Когда в начале второго тысячелетия до н. э. индоевропейцы двинулись на завоевание Древнего мира, они принесли с собой новую концепцию ведения войны, основанную на использовании быстроходных колесниц, запряженных лошадьми. Повозками правили

Из книги Бог войны автора Носовский Глеб Владимирович

1. Медь и бронза Обычно эпоха, не освещенная дошедшими до нас письменными памятниками, делится историками на три основных периода: каменный, медный и железный век. При этом медный век часто называют также бронзовым, поскольку историки полагают, будто бы бронза (сплав

автора

Бронза Это изобретенный человеком сплав меди с оловом и с другими металлами дал название целой эпохе в жизни человечества – бронзовому веку (ІV-І тыс. до н. э.).Слово «бронза», по некоторым версиям, имеет арабское или персидское происхождение. Плиний Старший выводит это

Из книги Энциклопедия славянской культуры, письменности и мифологии автора Кононенко Алексей Анатольевич

Олово Сравнительно редкий металл, использование которого началось в очень древние времена. Изделия из чистого олова найдены археологами на территории Чехии, Словакии, Испании, Греции. Как и свинец, олово примешивали к меди для выплавки бронзы. В средние века оловом

Владислав Тележко

Как известно, олово является компонентом бронзы. Существуют, правда, бронзы мышьяковистые, где вместо олова, легирующей добавкой, повышающей прочность меди, является мышьяк. Существуют бронзы, в которых для этих же целей вместо олова используется свинец. Однако, как в древности, так и в настоящее время, в основном, используются бронзы оловянистые, о которых и пойдет речь в последующем изложении.. Таким образом, чтобы выплавить бронзу, кроме меди, нужно олово.

Основным минералом для получения олова является оловянный камень - касситерит, который химически представляет собой двуокись олова. Олово из касситерита легко получить при помощи восстановления в печи при недостатке кислорода, что легко достигается добавлением в шихту древесного угля. Эта технология, несомненно, была доступна древним металлургам. Аналогичным способом получали и получают железо из широко распространенных в природе оксидов железа.

Таким образом, геологи нам говорят, что касситерит и в настоящее время добывается, в основном, из россыпей - из речных наносов, а не из коренных пород. Речные наносы и россыпи, так сложилось в геологии, называются аллювиальными. Они являются результатом выноса реками горных пород, которые были разрушены в результате эрозии. В аллювиальных россыпях находят многие ценные минералы и драгоценные металлы, в то числе золото. В том числе и оловянный камень - касситерит. Чем древнее горы, тем больше они подвержены эрозии и тем толще аллювиальные отложения. Древние горы - Урал, Карпаты, Татры, Рудные горы в Центральной Европе всегда были источником ценных минералов и драгоценных металлов - золота и серебра. И, если золота, серебра, оловянного камня там сейчас осталось мало, то это не означает, что их никогда там и не было. Они там были, но их не стало в результате интенсивной добычи. Во времена Бронзового века касситерит, медные руды и леса были стратегическими материалами, примерно такими же, как и в средние века алюмокалиевые квасцы, необходимые для получения пороха или сейчас, например, уран, необходимый для ядерного оружия.
Отсутствие касситерита в россыпях в тех местах, где процветали цивилизации Бронзового века означает лишь то, что его вымели там подчистую. И, если оловянный камень и сохранился на поверхности в настоящее время, это означает лишь то, что в древности эти места были захолустьем мировой цивилизации.
Ситуация с касситеритом в современности аналогична с ситуацией с лесами. В центрах цивилизаций Бронзового века, например, на Кипре и в Греции лесов в настоящее время нет. Леса там были уничтожены в результате использования в металлургии, поскольку для восстановления металлов из оксидов необходим древесный уголь.
В той же работе Эдварда Эрлиха "Минеральные месторождения в истории человечества" читаем:
«Важнейшим элементом производства металла было топливо, в частности, древесный уголь. Массовая дефорестация (уничтожение лесов) восточного Средиземноморья началась к 1200 году до н. э., по-видимому, сначала в сухих районах. Во всяком случае, уже законы Хаммурапи (1750 лет до н. э) налагали высокий штраф за вырубку лесов. По реконструкции современных археологов, производство рудниками Лавриона в Аттике трех с половиной тысяч тонн серебра и 1.4 миллиона тонн свинца на протяжении 300 лет сопровождалось уничтожением 2.5 миллиона акров леса. Разработка рудников Лавриона была приостановлена не из-за исчерпания запасов руды и не потому, что выработка опустилась ниже уровня подземных вод, а из-за того, что стоимость «горючего» для производствам металла - леса -делала рудники убыточными. По словам Платона, район вокруг Афин когда-то он был покрыт густым лесом. Ныне же это - кожа и кости прежней Аттики. Именно металлургия привела и к полному уничтожению растительности Кипра, также некогда покрытого густыми лесами. По свидетельству Эратосфена, до начала интенсивной разработки меди леса на Кипре были так густы, что их вырубка поощрялась. »

Таким образом, мне представляется, что очередной «открытие» ниспровергателей истории можно смело считать закрытым. Бронзовый век был и, именно, деятельность человека в это время и привела, как к уничтожению лесов в Восточном Средиземноморье, так и к полному исчезновению оловянного камня из россыпей в Южной и Центральной Европе и на Ближнем Востоке.

P.S. Интересно, что такую же судьбу имеют и месторождения малахита, который являлся одним из основных минералов для выплавки меди. В настоящее время малахит остался в Конго и в небольшом количестве на Урале. На Ближнем Востоке и в Южной Европе, где в свое время процветали цивилизации Бронзового века, малахита нет. Однако, так было не всегда. Археологи раскопали в древних неолитических слоях в поселениях Малой Азии (VI-VII тысячелетия до н.э.) куски малахита вместе с кусками меди и древесного угля, что говорит о существовании там металлургии меди.
см. Вяч.Вс. Иванов "История славянских и балканских названий металлов"
http://www.inslav.ru/images/stories/pdf/1983_Ivanov_Istorija_nazvanij_metallov.pdf

Вероятнее всего, месторождения малахита в этих местах были также выработаны для получения меди еще в древности.

P.P.S. В работе Эдварда Эрлиха "Минеральные месторождения в истории человечества" про добычу олова на Ближнем Востоке на заре Бронзового века сказано следующее:
"Олово было редким металлом, как правило, его надо было завозить. Пожалуй, первыми оловянными бронзами были бронзы Анатолии, связанные с добычей олова из месторождений Киликии и Тавроса. ... здесь разрабатывалось около 40 месторождений олова. При этом главным минералом - источником олова здесь был, скорее всего, сульфид меди, железа и олова - станнин (Сu2FeSnS4). Большое поселение Кёльтепе производило олово в период с 3290 до 1840 года до н. э. (2) Караваны ослов доставляли металл к потребителю. Около 2350 года до н. э. аккадский царь Саргон пишет о том, что один караван нес около 12 тонн олова. Этого было достаточно, чтобы выплавить 125 тонн бронзы и вооружить значительную армию изделиями из нее. После падения Аккада грузы доставлялись ассирийскими купцами из Ашшура, в нынешнем северном Ираке, в район медных месторождений Кёльтепе в сегодняшней Турции к располагавшимся там металлургическим центрам. Общий вес доставляемого за год олова был существенно выше тонны, а этого хватало для изготовления 10-15 тонн бронзы в год. Имперские государства, такие, как Ассирия и Минойская империя, делали все от них зависящее, чтобы охранять торговлю оловом.
Производство бронзы на душу населения было невелико и зависело от наличия добываемых или закупаемых сырьевых ресурсов. В Вавилонии оно достигло 300 граммов, а в Египте - 50 граммов в год на душу населения."

Металл олово, добыча и месторождения олова, производство и применение металла

информация о металле олово, свойства олова, месторождения и добыча олова, производство и применение металла

Развернуть содержание

Свернуть содержание

Олово - это, определение

Олово - это элемент главной подгруппы четвёртой группы, пятого периодической системы химических элементов Д. И. , с атомным номером 50. Обозначается символом Sn (лат. Pewter). При нормальных условиях простое вещество олово - пластичный, ковкий и легкоплавкий блестящий серебристо-белого цвета. Олово образует несколько аллотропных модификаций: ниже 13,2 °С устойчиво α-олово (серое олово) с кубической решёткой типа алмаза, выше 13,2 °С устойчиво β-олово (белое олово) с тетрагональной кристаллической решеткой.

1.1 Олово Tin metal Sn

Олово - это один из металлов, которые оказали решающее влияние на : (от 4 до 1 тыс. лет до н.э.) назван так по имени сплава олова с медью .

Олово - это мягкий белый металл, который можно сплавлять с медью , что-бы получить бронзу, один из первых освоенных человеком металлов.

Олово - это один из семи металлов древности, который способен сохранять вкус и запах напитков.

Олово - это металл Юпитера, который нередко использовался для предсказания будущего. Этот металл сильно связан с достатком и изобилием, с получением каких-то необходимых человеку благ, которые даются человеку за исполнение ; например, человек может служить обществу или религии. Это металл иерархов, священников и социальных лидеров.

Олово - это вещество, относящееся к группе легких металлов. При нормальной (комнатной) температуре не вступает в реакцию ни с кислородом, ни с водой. Со временем способно покрываться специальной пленкой, предохраняющей металл от коррозии.

История об олове

Первые упоминания об олове, имеющем, как люди считали раньше, даже некоторые магические свойства, можно найти в библейских текстах. Решающее значение для улучшения жизни олово сыграло в период «бронзового» века. На то время самым прочным металлическим сплавом, которым обладал человек, была бронза, её можно получить, если в медь добавить химический элемент олово. На протяжении нескольких веков из этого материала изготовляли всё, начиная от орудий труда и заканчивая ювелирными изделиями.

Латинское название tin, связанное с санскритским словом, означающим «стойкий, прочный», первоначально относилось к сплаву и серебра , а позднее к другому, имитирующему его сплаву, содержащему около 67 % олова. К IV веку этим словом называть собственно олово.

Слово олово - общеславянское, имеющее соответствия в балтийских языках (ср. лит. alavas, alvas - «олово», прусск. alwis - «свинец»). Оно является суффиксальным образованием от корня ol- (ср. древневерхненемецкое elo - «жёлтый», лат. albus - «белый» и пр.), так что металл назван по цвету.

Олово было известно человеку уже в IV тысячелетии до н.э. Этот металл был малодоступен и дорог, так как изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвёртой Книге Моисеевой. Олово является (наряду с медью) одним из компонентов бронзы, изобретённой в конце или середине III тысячелетия до н. э.. Поскольку бронза являлась наиболее прочным из известных в то время металлов и сплавов, олово было «стратегическим металлом» в течение всего «бронзового века», более 2000 лет (очень приблизительно: 35-11 века до н. э.).

Нахождение олова в природе

Олово - редкий рассеянный элемент, по распространенности в земной коре олово занимает 47-е место. Кларковое содержание олова в земной коре составляет, по разным данным, от 2·10−4 до 8·10−3 % по массе. Основной олова - касситерит (оловянный камень) SnO2, содержащий до 78,8 % олова. Гораздо реже в природе встречается станнин (оловянный колчедан) - Cu2FeSnS4 (27,5 % Sn).

Распространённость в природе отражена в следующей таблице

В незагрязнённых поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограмм на дм³, увеличиваясь в районе оловорудных месторождений, оно попадает в воды за счёт разрушения в первую очередь сульфидных минералов, неустойчивых в зоне окисления. ПДКSn = 2 мг/дм³.

Олово является амфотерным элементом, то есть элементом, способным проявлять кислотные и основные свойства. Это свойство олова определяет и особености его распространения в природе. Благодаря этой двойственности олово проявляет литофильные, халькофильные и сидерофильные свойства. Олово по своим свойствам проявляет близость к кварцу, вследствие чего известна тесная связь олова виде окиси (касситерита) с кислыми гранитоидами (литофильность), часто обогащёнными оловом, вплоть до образования самостоятельных кварц-касситеритовых жил. Щелочной характер поведения олова определяется в образовании довольно разнообразных сульфидных соединений (халькофильность), вплоть до образования самородного олова и различных интерметаллических соединений, известных в ультраосновных породах (сидерофильность).

Формы нахождения

Основная форма нахождения олова в горных породах и минералах - рассеянная (или эндокриптная). Однако олово образует и минеральные формы, и в этом виде часто встречается не только как акцессорий в кислых магматических породах, но и образует промышленные концентрации преимущественно в окисной (касситерит SnO2) и сульфидной (станнин) формах.

Твёрдая фаза. Минералы

В общем можно выделить следующие формы нахождения олова в природе:

Рассеянная форма; конкретная форма нахождения олова в этом виде неизвестна. Здесь можно говорить об изоморфно рассеянной форме нахождения олова вследствие наличия изоморфизма с рядом элементов (Ta, Nb, W - с образованием типично кислородных соединений; V, Cr, Ti, Mn, Sc - с образованием кислородных и сульфидных соединений). Если концентрации олова не превышают некоторых критических значений, то оно изоморфно может замещать названные элементы. Механизмы изоморфизма различны.

Минеральная форма: олово установлено в минералах-концентраторах. Как правило, это минералы, в которых присутствует Fe+2: биотиты, гранаты, пироксены, магнетиты, турмалины и т. д. Эта связь обусловлена изоморфизмом, например по схеме Sn+4 + Fe+2 → 2Fe+3. В оловоносных скарнах высокие концентрации олова установлены в гранатах (до 5,8 вес.%) (особенно в андрадитах), эпидотах (до 2,84 вес.%) и т. д.

На сульфидных месторождениях олово входит как изоморфный элемент в сфалериты (Силинское месторождение, Приморье), халькопириты (Дубровское месторождение, Россия, Приморье), пириты. Высокие концентрации олова выявлены в пирротине грейзенов Смирновского месторождения (Россия, Приморье). Считается, что из-за ограниченного изоморфизма происходит распад твёрдых растворов с микровыделениями Cu2+1Fe+2SnS4 или тиллита PbSnS2 и других минералов.

Собственно минеральные формы

Самородные элементы, сплавы и интерметаллические соединения

Хотя концентрации этих минералов в породах очень низки, однако распространены они в широком круге генетических образований. Среди самородных форм в месте с Sn выявлены Fe, Al, Cu, Ti, Cd и т. д., не считая уже известные самородные , золото и серебро . Эти же элементы образуют между собой и различные сплавы: (Cu + Sn + Sb), (Pb + Sn + Sb) и др., а также твёрдые растворы. Среди интерметаллических соединений установлены стистаит SnSb, атакит (Pd,Pt)3Sn, штумырлит Pt(Sn,Bi), звягинцевит (Pd,Pt)3(Pb,Sn), таймырит (Pd,Cu,Pt)3Sn и другие.

Приведённые формы нахождения олова и других элементов встречаются в различных геологических образованиях:

Группа интрузивных и эффузивных магматических пород: траппы, пикриты Сибирской платформы, гипербазиты и габброиды Камчатки, кимберлиты Якутии, лампроиты Алдана и т. д.; гранитоиды Приморья, Дальнего Востока, Тянь-Шаня.

Группа метасоматически и гидротермально изменённых пород: медно-никелевые руды Сибирской платформы, золоторудные объекты Урала, Кавказа, Узбекистана и т. д.

Группа современного рудообразования: пелагические осадки Тихого океана, продукты Большого Трещинного Толбачинского извержения, гидротермальная система Узон на Камчатке и пр.

Группа осадочных пород различного происхождения.

Окисные соединения олова

Наиболее известной формой является главный минерал олова - касситерит SnO2, представляющий собой соединение олова с кислородом. В минерале по данным ядерной гамма-резонансной спектроскопии присутствует Sn+4

Касситерит (от греч. kassiteros - олово) - главный рудный минерал для получения олова. Теоретически содержит 78,62 % Sn. Образует отдельные выделения, зерна, сплошные массивные агрегаты, в которых зерна минерала достигают в размере 3 - 4 мм и даже больше.

1. плотность 6040-7120 кг/м³ (наиболее низкая у светлоокрашенных касситеритов);

2. твердость 6½;

3. блеск - матовый, на гранях - алмазный;

4. спайность несовершенная;

5. излом раковистый;

Основные формы выделения касситерита:

1. микровключения в других минералах;

2. акцессорные выделения минерала в породах и рудах;

3.сплошные или вкрапленные руды: игольчатые радиально-лучистые агрегаты (Приморье), коломорфные и криптокристаллические выделения и скопления (Приморье); кристаллическая форма - главная форма выделения касситерита. В Российской Федерации месторождения касситерита имеются на Северо-Востоке, в Приморье, Якутии, Забайкалье; за - в Малайзии, Таиланде, Индонезии, КНР, Нигерии и др.

Гидроокисные соединения

Второстепенное место занимают гидроокисные соединения олова, которые можно рассматривать как соли полиоловянных кислот. К ним можно отнести минерал сукулаит Ta2Sn2+2O; твёрдый раствор олова в магнетите вида Fe2SnO4 или Fe3SnO3 (Бретштейн Ю. С., 1974;Воронина Л. Б. 1979); «варламовит» - продукт окисления станнина; считается, что он представляет собой смесь аморфных и полуаморфных соединений Sn, метаоловянной кислоты, поликонденсированной фазы и гидрокасситеритовой фазы. Известны также гидратированные продукты окисления - гидромартит 3SnOxH2O; мушистонит (Cu,Zn,Fe)Sn(OH)6; гидростаннат меди CuSn(OH)6 и др.

Силикаты

Известна многочисленная группа силикатов олова, представленная малаяитом CaSn(SiO5); пабститом Ba(Sn, Ti)Si3O9, стоказитом Ca2Sn2Si6O18x4H2O и др. Малаяит образует даже промышленные скопления.

Шпинелиды

Из других окисных соединений известны также шпинелиды, например, минерал нигерит Sn2Fe4Al16О32 (Peterson E.U., 1986).

Сульфидные соединения олова

Включает различные соединения олова с . Это вторая по промышленному значению группа минеральных форм нахождения олова. Наиболее важным из них является станнин, второй по значению минерал. Кроме этого отмечаются франкеит Pb5Sn3Sb2S14, герценбергит SnS, берндтит SnS2, тиллит PbSnS2 и кестерит Cu2ZnSnS4. Выявлены и более сложные сульфидные соединения олова со свинцом, серебром , медью , имеющие в основном минералогическое значение. Тесная связь олова с медью обусловливает частое присутствие на оловорудных месторождения халькопирита CuFeS2 с образованием парагенезиса касситерит - халькопирит.

Станнин (от лат. stano - олово), оловянный колчедан, минерал из класса сульфидов с общей формулой вида Cu2FeSnS4. Она следует из формулы халькопирита путём замены одного атома Fe на Sn. Содержит 29,58 % Cu, 12,99 % Fe, 27,5 % Sn и 29,8 S, а также примеси Zn, Sb, Cd, Pb и Ag. Широко распространённый минерал в оловорудных месторождениях Российской Федерации. На ряде местрождений Российской Федерации (Приморье, Якутия) и Средней (Таджикистан) он является существенным элементов сульфидных минералов и часто вместе с варламовитом составляет 10-40 % общего олова. Часто образует вкрапленность в сфалерите ZnS, халькопирите. Во многих случаях наблюдаются явления распада станнина с выделением касситерита.

Коллоидная форма

Коллоидные и олово-кремнистые соединения играют значительную роль в геохимии олова, хотя детально она не изучена. Значительное место в геологии элемента играют коломорфные соединения и продукты его кристаллических превращений в скрытокристаллические разности. Коломорфный касситерит рассматривается как форма выражения вязких гелеобразных растворов.

Независимые исследования выявили аномально высокую растворимость SnO2 в хлор-кремниевых растворах. Максимальная растворимость достигается при отношении.

Анализ свойств соединения Sn(OH)4 и близость их к соединению Si(OH)4 выявляет способность его к полимеризации с образованием в конечном счёте соединений H2SnkO2k+1, SnkO2k−1(OH)2. В обоих случаях возможно замещение группы (ОН) на анионы F и Cl.

Таким образом, полимеризация молекул Sn(OH)4 и соединение их с молекулами Si(OH)4 ведёт к образованию геля (коллоида) и появлению цепочек HmSn2nSinOp, причём m ≤ 8 , или Hs (Некрасов И. Я. и др., 1973).

Имеющиеся данные говорят о том, что коллоидная форма является естественным промежуточным звеном при осаждении олова из гидротермальных растворов.

Формы нахождения олова в жидкой фазе

Наименее изученная часть геохимии олова, хотя в газово-жидких включениях установлены касситериты в виде минералов-узников (Кокорин А. М. и др., 1975). Работ по анализу конкретных оловосодержащих природных растворов нет. В основном вся основана на результатах экспериментальных исследований, которые говорят только о вероятных формах нахождения олова в растворах. Существенную роль в разработке методики этих исследований принадлежит академику В. Л. Барсукову

Вся совокупность экспериментально установленных форм нахождения олова в растворах разбивается на группы:

Ионные соединения. Эти соединения и их структура описываются с позиций классических валентных и стереохимических представлений. Выделяюся подгруппы:

Простые ионы Sn+2 и Sn+4 в основном обнаружены в магматических раславах, а также в гидротермальных растворах, обладающими низкими значениями рН. Однако в существующих гидротермальных системах, отражаемых составом газово-жидких включений, такие условия не установлены.

Соли галлоидных кислот - SnF2, SnF40, SnCl40. Считается, что роль хлора в переносе и отложении олова и сопутствующих металлов более значительна, чем роль фтора.

Гидроксильные соединения олова. В щелочных условиях исходными являются соединения H2SnO2, H2SnO4, H2SnO3. Эти формы часто устанавливаются на основе известных минеральных форм. Часть этих форм имеет как искусственное (CaSnO3, Ca2SnO4), так и природное (FeSnO2, Fe2SnO4) происхождение. В кислых средах эти соединения ведут себя как слабые основания типа Sn(OH)2, Sn(OH)4. Считается, что одной из форм проявления подобных соединений является варламовит. Согласно экспериментальным данным Sn(OH)4 отлагается только при Т< 280°C в слабокислых или нейтральных условиях при рН = 7 - 9. Соединения Sn(OH)4 и Sn(OH)3+ устойчивы при рН= 7 - 9, тогда как Sn(OH)2+2 и Sn(OH)+2 - при рН < 7.

Довольно часто группы (ОН)-1 замещаются на F и Cl, создавая галогенозамещённые модификации гидросоединений олова. В общем виде эти формы представлены соединениями Sn(OH)4-kFk или Sn(OH)4-kFk-nn. В целом соединение Sn(OH)3F устойчиво при Т = 25 - 50 °C, а Sn(OH)2F² при Т = 200 °C.

Сульфидные соединения. По экспериментальным данным в растворе присутствуют соединения SnS4-4 или SnS3-2 при рН > 9; SnS2O-2 (pH = 8 - 9) и Sn(SH)4 (pH = 6). Имеется упоминание о существовании соединения типа Na2SnS3, неустойчивого в кислой среде.

Комплексные соединения олова изучены при растворении касситерита во фторированных средах. Эти соединения отличаются высокой растворимостью. Этими же свойствами обладают соединения, полученные в хлоридных растворах. В качестве основных форм комплексных соединений, известных из экспериментов, можно назвать Na2(Sn(OH)6), Na2(SnF6), Na2(Sn(OH)2F4) и пр. Эксперименты показали, что комплекс Sn(OH)4F2-2 будет преобладать при Т = 200 °C.

Коллоидные и олово-кремнистые соединения. Об их существании говорит присутствие на многих месторождениях коломорфных выделений касситерита.

Промышленные типы месторождений олова

Описанные выше геохимические особенности олова находят косвенное отражение в формационной оловорудных месторождений, предложенной Е. А. Радкевич с последующими дополнениями.

А. Формация оловоносных гранитов. Касситерит установлено в акцессорной части гранитов.

Б. Форрмация редкомеиальных гранитов. Это граниты литионит-амазонит-альбитового типа (апограниты по А. А. Беусу). Касситерит в акцессорной части вместе колумбит-татнатлитом, микролитом и пр.

В. Формация оловоносных пегматитов. Оловянная минерализация характерна для Be-Li-, Be-Ta-, F-Li- типов.

Г. Формация полевошпат-кварц-касситеритовая. Выделена Ив. Ф. Григорьевым. Это кварц-полевошпатовые жилы с касситеритом и др. минералами.

Д.Формация кварц-касстеритовая. Распространена на СВ СССР. Это жильные зоны, грейзены с кварцем, мусковитом, вольфрамитом, касситеритом и др.

Е.Формация касситерит-силикатно-сульфидная с турмалиновым и хлоритовым типами. Одна из основных продуктивных формаций Приморья Российской Федерации.

Ж.Формация касситерит-сульфидная. Также основная оловопродуктивная формация. В ней выделяют основные типы:

штокверковое олово-вольфрамовое оруденение;

рудные тела квар-касситерит-арсенопиритового типа;

продуктивные кварцевые жилы сульфидно-касситерит-хлоритового типа;

З.Формация оловянно-скарновая.

И.Формация деревянистого олова (риолитовая формация).

К.Формация основных и ультраосновных пород (по И. Я. Некрасову)

Двуокись олова - очень эффективный абразивный материал, применяемый при «доводке» поверхности оптического стекла.

Смесь солей олова - «жёлтая композиция» - ранее использовалась как краситель для шерсти.

Олово применяется также в химических источниках тока в качестве анодного материала, например: марганцево-оловянный элемент, окисно-ртутно-оловянный элемент. Перспективно использование олова в свинцово-оловянном аккумуляторе; так, например, при равном напряжении со свинцовым аккумулятором свинцово-оловянный аккумулятор обладает в 2,5 раза большей емкостью и в 5 раз большей энергоплотностью на единицу объёма, внутреннее сопротивление его значительно ниже.

Олово – химический элемент

Олово – один из немногих металлов, известных человеку еще с доисторических времен. Олово и медь были открыты раньше железа, а сплав их, бронза, – это, по-видимому, самый первый «искусственный» материал, первый материал, приготовленный человеком.

Результаты археологических раскопок позволяют считать, что еще за пять тысячелетий до нашей эры люди умели выплавлять и само олово. Известно, что древние египтяне олово для производства бронзы возили из .

Под названием «трапу» этот металл описан в древнеиндийской литературе. Латинское название олова tin происходит от санскритского «ста», что означает «твердый».

Упоминание об олове встречается и у Гомера. Почти за десять веков до новой эры финикияне доставляли оловянную руду с Британских островов, называвшихся тогда Касситеридами. Отсюда название касситерита – важнейшего из минералов олова; состав его SnO2. Другой важный минерал – станнин, или оловянный колчедан, Cu2FeSnS4. Остальные 14 минералов элемента №50 встречаются намного реже и промышленного значения не имеют. Между прочим, наши предки располагали более богатыми оловянными рудами, чем мы. Можно было выплавлять металл непосредственно из руд, находящихся на поверхности Земли и обогащенных в ходе естественных процессов выветривания и вымывания. В наше время таких руд уже нет. В современных условиях процесс получения олова многоступенчатый и трудоемкий. Руды, из которых выплавляют олово теперь, сложны по составу: кроме элемента №50 (в виде окисла или сульфида) в них обычно присутствуют кремний, железо, свинец, медь , мышьяк, кальций, вольфрам и другие элементы. Нынешние оловянные руды редко содержат больше 1% Sn, а россыпи – и того меньше: 0,01...0,02% Sn. Это значит, что для получения килограмма олова необходимо добыть и переработать по меньшей мере центнер руды.

Как получают олово из руд? Производство элемента №50 из руд и россыпей всегда начинается с обогащения. Методы обогащения оловянных руд довольно разнообразны. Применяют, в частности, гравитационный метод, основанный на различии плотности основного и сопутствующих минералов. При этом нельзя забывать, что сопутствующие далеко не всегда бывают пустой породой. Часто они содержат ценные металлы, например вольфрам, титан, лантаноиды. В таких случаях из оловянной руды пытаются извлечь все ценные компоненты.

Состав полученного оловянного концентрата зависит от , и еще от того, каким способом этот концентрат получали. Содержание олова в нем колеблется от 40 до 70%. Концентрат направляют в печи для обжига (при 600...700°C), где из него удаляются относительно летучие примеси мышьяка и серы. А большую часть железа, сурьмы, висмута и некоторых других металлов уже после обжига выщелачивают соляной кислотой. После того как это сделано, остается отделить олово от кислорода и кремния. Поэтому последняя стадия производства чернового олова – плавка с углем и флюсами в отражательных или электрических печах. С физико-химической точки зрения этот процесс аналогичен доменному: углерод «отнимает» у олова кислород, а флюсы превращают двуокись кремния в легкий по сравнению с металлом шлак.

В черновом олове примесей еще довольно много: 5...8%. Чтобы получить металл сортовых марок (96,5...99,9% Sn), используют огневое или реже электролитическое . А нужное полупроводниковой промышленности олово чистотой почти шесть девяток – 99,99985% Sn – получают преимущественно методом зонной плавки.

Для того чтобы получить килограмм олова, не обязательно перерабатывать центнер руды. Можно поступить иначе: «ободрать» 2000 старых консервных банок.

Всего лишь полграмма олова приходится на каждую . Но помноженные на масштабы производства эти полуграммы превращаются в десятки тонн... Доля «вторичного» олова в промышленности капиталистических стран составляет примерно треть общего производства. В нашей стране работают около ста промышленных установок по регенерации олова.

Как же снимают олово с белой жести? Механическими способами сделать это почти невозможно, поэтому используют различие в химических свойствах железа и олова. Чаще всего жесть обрабатывают газообразным хлором. Железо в отсутствие влаги с ним не реагирует. Олово же соединяется с хлором очень легко. Образуется дымящаяся жидкость – хлорное олово SnCl4, которое применяют в химической и текстильной промышленности или отправляют в электролизер, чтобы получить там из него металлическое олово. И опять начнется «круговерть»: этим оловом покроют стальные листы, получат белую жесть. Из нее сделают банки, банки заполнят едой и запечатают. Потом их вскроют, консервы съедят, банки выбросят. А потом они (не все, к сожалению) вновь попадут на заводы «вторичного» олова.

Другие элементы совершают круговорот в природе с участием растений, микроорганизмов и т.д. Круговорот олова – дело рук человеческих.

Олово в сплавах. На консервные банки идет примерно половина мирового производства олова. Другая половина – в , для получения различных сплавов. Мы не будем подробно рассказывать о самом известном из сплавов олова – бронзе, адресуя читателей к статье о меди – другом важнейшем компоненте бронз. Это тем более оправдано, что есть безоловянные бронзы, но нет «безмедных». Одна из главных причин создания безоловянпьтх бронз – дефицитность элемента №50. Тем не менее бронза, содержащая олово, по-прежнему остается важным материалом и для машиностроения, и для искусства.

Техника нуждается и в других оловянных сплавах. Их, правда, почти не применяют в качестве конструкционных, материалов: они недостаточно прочны и слишком дороги. Зато у них есть другие свойства, позволяющие решать важные технические задачи при сравнительно небольших материала.

Чаще всего оловянные сплавы применяют в качестве антифрикционных материалов или припоев. Первые позволяют сохранять машины и механизмы, уменьшая потери на трение; вторые соединяют металлические детали.

Из всех антифрикционных сплавов наилучшими свойствами обладают оловянные баббиты, в составе которых до 90% олова. Мягкие и легкоплавкие свинцовооловянные припои хорошо смачивают поверхность большинства металлов, обладают высокой пластичностью и сопротивлением усталости. Однако область их применения ограничивается из-за недостаточной механической прочности самих припоев.

Олово входит также в состав типографского сплава гарта. Наконец, сплавы на основе олова очень нужны электротехнике. Важнейший материал для электроконденсаторов – станиоль; это почти чистое олово, превращенное в тонкие листы (доля других металлов в станиоле не превышает 5%).

Между прочим, многие сплавы олова – истинные химические соединения элемента №50 с другими металлами. Сплавляясь, олово взаимодействует с кальцием, магнием, цирконием, титаном, многими редкоземельными элементами. Образующиеся при этом соединения отличаются довольно большой тугоплавкостью. Так, станнид циркония Zr3Sn2 плавится лишь при 1985°C. И «виновата» здесь не только тугоплавкость циркония, но и характер сплава, химическая связь между образующими его веществами. Или другой пример. Магний к числу тугоплавких металлов не отнесешь, 651°C – далеко не рекордная температура плавления. Олово плавится при еще более низкой температуре – 232°C. А их сплав – соединение Mg2Sn – имеет температуру плавления 778°C.

Тот факт, что элемент №50 образует довольно многочисленные сплавы такого рода, заставляет критически отнестись к утверждению, что лишь 7% производимого в мире олова расходуется в виде химических соединений («Краткая химическая энциклопедия», т. 3, с. 739). Видимо, речь здесь идет только о соединениях с неметаллами.

Соединения с неметаллами. Из этих веществ наибольшее значение имеют хлориды. В тетрахлориде олова SnCl4 растворяются иод, фосфор, сера, многие органические вещества. Поэтому и используют его главным образом как весьма специфический растворитель. Дихлорид олова SnCl2 применяют как протраву при крашении и как восстановитель при синтезе органических красителей. Те же функции в текстильном производстве еще у одного соединения элемента №50 – станната натрия Na2SnO3. Кроме того, с его помощью утяжеляют шелк.

Промышленность ограниченно использует и окислы олова. SnO применяют для получения рубинового стекла, a SnO2 – белой глазури. Золотисто-желтые кристаллы дисульфида олова SnS2 нередко называют сусальным золотом , которым «золотят» дерево, гипс. Это, если можно так выразиться, самое «антисовременное» применение соединений олова. А самое современное?

Если иметь в виду только соединения олова, то это применение станната бария BaSnO3 в радиотехнике в качестве превосходного диэлектрика. А один из изотопов олова, 119Sn, сыграл заметную роль при изучении эффекта Мессбауэра – явления, благодаря которому был создан новый метод исследования – гамма-резонансная спектроскопия. И это не единственный случай, когда древний металл сослужил службу современной науке.

На примере серого олова – одной из модификаций элемента №50 – была выявлена связь между свойствами и химической природой полупроводникового материала. И это, видимо, единственное, за что серое олово можно помянуть добрым словом: вреда оно принесло больше, тем пользы. Мы еще вернемся к этой разновидности элемента №50 после рассказа о еще одной большой и важной группе соединений олова.

Об оловоорганике. Элементоорганических соединений, в состав которых входит олово, известно великое множество. Первое из них получено еще в 1852 г.

Сначала вещества этого класса получали лишь одним способом – в обменной реакции между неорганическими соединениями олова и реактивами Гриньяра. Вот пример такой реакции:

SnCl4 + 4RMgX → SnR4 + 4MgXCl

(R здесь – углеводородный радикал, X – галоген).

Соединения состава SnR4 широкого практического применения не нашли. Но именно из них получены другие оловоорганические вещества, польза которых несомненна.

Впервые интерес к оловоорганике возник в годы первой мировой . Почти все органические соединения олова, полученные к тому времени, были токсичны. В качестве отравляющих веществ эти соединения не были использованы, их токсичностью для насекомых, плесневых грибков, вредных микробов воспользовались позже. На основе ацетата трифенилолова (C6H5)3SnOOCCH3 был создан эффективный препарат для борьбы с грибковыми заболеваниями картофеля и сахарной свеклы. У этого препарата оказалось еще одно полезное свойство: он стимулировал рост и развитие растений.

Для борьбы с грибками, развивающимися в аппаратах целлюлозно-бумажной промышленности, применяют другое вещество – гидроокись трибутилолова (С4Н9)3SnOH. Это намного повышает производительность аппаратуры.

Много «профессий» у дилаурината дибутилолова (C4H9)2Sn(OCOC11H23)2. Его используют в ветеринарной практике как средство против гельминтов (глистов). Это же вещество широко применяют в химической промышленности как стабилизатор поливинилхлорида и других полимерных материалов и как . Скорость реакции образования уретанов (мономеры полиуретановых каучуков) в присутствии такого катализатора возрастает в 37 тыс. раз.

На основе оловоорганических соединений созданы эффективные инсектициды; оловоорганические стекла надежно защищают от рентгеновского облучения, полимерными свинец- и оловоорганическими красками покрывают подводные части кораблей, чтобы на них не нарастали моллюски.

Все это соединения четырехвалентного олова. Ограниченные рамки статьи не позволяют рассказать о многих других полезных веществах этого класса.

Органические соединения двухвалентного олова, напротив, немногочисленны и практического применения пока почти не находят.

О сером олове. Морозной зимой 1916 г. партия олова была отправлена по железной дороге с Дальнего Востока в европейскую часть Российской Федерации. Но на место не серебристо-белые слитки, а преимущественно мелкий серый порошок.

За четыре года до этого произошла катастрофа с экспедицией полярного исследователя Роберта Скотта. Экспедиция, направлявшаяся к Южному полюсу, осталась без топлива: оно вытекло из железных сосудов сквозь швы, пропаянные оловом.

Примерно в те же годы к известному русскому химику В.В. Марковникову обратились из интендантства с просьбой объяснить, что происходит с лужеными чайниками, которыми снабжали русскую армию. Чайник, который принесли в лабораторию в качестве наглядного примера, был покрыт серыми пятнами и наростами, которые осыпались даже при легком постукивании рукой. Анализ показал, что и пыль, и наросты состояли только из олова, без каких бы то ни было примесей.

Что же происходило с металлом во всех этих случаях?

Как и многие другие элементы, олово имеет несколько аллотропических модификаций, несколько состояний. (Слово «аллотропия» переводится с греческого как «другое свойство», «другой поворот».) При нормальной плюсовой температуре олово выглядит так, что никто не может усомниться в принадлежности его к классу металлов.

Белый металл, пластичный, ковкий. Кристаллы белого олова (его называют еще бета-оловом) тетрагональные. Длина ребер элементарной кристаллической решетки – 5,82 и 3,18 Ǻ. Но при температуре ниже 13,2°C «нормальное» состояние олова иное. Едва достигнут этот температурный порог, в кристаллической структуре оловянного слитка начинается перестройка. Белое олово превращается в порошкообразное серое, или альфа-олово, и чем ниже температура, тем больше скорость этого превращения. Максимума она достигает при минус 39°C.

Кристаллы серого олова кубической конфигурации; размеры их элементарных ячеек больше – длина ребра 6,49 Ǻ. Поэтому плотность серого олова заметно меньше, чем белого: 5,76 и 7,3 г/см3 соответственно.

Результат превращения белого олова в серое иногда называют «оловянной чумой». Пятна и наросты на армейских чайниках, вагоны с оловянной пылью, швы, ставшие проницаемыми для жидкости, – следствия этой «болезни».

Почему сейчас не случаются подобные истории? Только по одной причине: оловянную чуму научились «лечить». Выяснена ее физико-химическая природа, установлено, как влияют на восприимчивость металла к «чуме» те или иные добавки. Оказалось, что алюминий и цинк способствуют этому процессу, а висмут, свинец и сурьма, напротив, противодействуют ему.

Кроме белого и серого олова, обнаружена еще одна аллотропическая модификация элемента №50 – гамма-олово, устойчивое при температуре выше 161°C. Отличительная черта такого олова – хрупкость. Как и все металлы, с ростом температуры олово становится пластичнее, но только при температуре ниже 161°C. Затем оно полностью утрачивает пластичность, превращаясь в гамма-олово, и становится настолько хрупким, что его можно истолочь в порошок.

В популярной форме автор знакомит с очень древним металлом - оловом. Этот металл и его соли применяют во многих народного хозяйства. В качестве защитных покрытий используются оловоорганические . В сельском хозяйстве и медицине широко применяются оловоорганические препараты. В наше время невозможно обойтись без оловянного порошка, фольги и других сплавов и солей.

Кто же он? Мягкий по своим свойствам, он придает другим твердость. Легкоплавкий от природы, он в соединении с другими металлами становится тугоплавким. Столетиями его использовали для отливки колоколов и пушек, монументов, статуй и украшений, которые восхищают нас и до сих пор.

Сегодня мы его встретим и в типографских шрифтах, и в консервных банках, и в подшипниках. Один из его изотопов помог разработать ученым новый метод исследования, которым в настоящее время широко пользуются химики, физики, биологи (гамма-резонансная спектроскопия) .

Недавно он «подружился» с углеводородами, и химики стали приготовлять вещества с замечательными свойствами - ядохимикаты, катализаторы, стабилизаторы, стимуляторы роста растений, лекарства и краски.

Увидев на елке сверкающие игрушки, Вы узнаете в «позолоте» нашего знакомца. Он не «живет» в отдельной квартире, а всегда в «коммунальной», с разными соседями. Чаще всего выбирает себе жилище в горах - в гранитных утесах и скалах. Нередко «селится» по берегам рек и на побережье морей и океанов. А иногда живет глубоко под землей. Потому нелегко бывает заставить его «выйти» на поверхность, а еще труднее «разъединить с соседями». Вот потому-то много хлопот доставляет он обогатителям и металлургам.

Первое знакомство.

Как же познакомились люди в древности с этим серебристо-белым металлом, где и когда произошло их первое знакомство?

Получив огонь, люди научились им пользоваться - обжигали глину, выплавляли из руд металлы. Вот тогда, по верованиям древних греков, человек и познакомился с оловом. Так гласит красивый поэтический миф.

А как же отвечает на этот вопрос современная наука?

До сих пор нет единого мнения ученых, нет и однозначного ответа.

«За пять - шесть тысяч лет до нашей эры, гораздо раньше, чем человек научился выплавлять и обрабатывать железо, он уже умел выплавлять олово», - писал академик А. Е. Ферсман1. Но далеко не все ученые разделяют эту точку зрения. Некоторые полагают, ссылаясь на археологические раскопки, что это событие произошло почти на тысячу лет позже. До сих пор самыми древними оловянными изделиями считают кольцо и флягу, найденные в одной из египетских пирамид. Они были изготовлены, по-видимому, в середине второго тысячелетия до нашей эры.

1 Ферсман А. Е. Занимательная геохимия. М.-Л.: Детгиз, 1954, 174 с.

Однако эти находки еще не могут служить достаточно веским доказательством того факта, что олово в чистом виде не использовали раньше. Возможно, что многие древние оловянные изделия просто не дошли до нас ввиду малой устойчивости этого металла к воздействию воздуха и влаги. К тому же на Древнем Востоке было немного оловянных месторождений. Они встречались в Месопотамии, в Северной , в Иране. В Египте не было своего олова, его ввозили из Ирана.

В древнеиндийской литературе - в Ведах, Махабхарате - олово называется трапу (trapu). В то же время латинское название stano происходит от санскритского «ста» - стойкий, «твердый, прочный. Это также свидетельствует о том, что олово было известно на четыре тысячи лет до нашей эры. Слово tin имеет и другое значение - «стоячая вода», пруд, озеро. В середине века олово считали разновидностью свинца и называли его белым свинцом (Plumbum album), обычный же свинец - черным свинцом (Plumbum nigrum). Русское название «олово», по мнению известного профессора Н. А. Фигуровского, происходит от древнеславянского слова «оловина» - хмельной напиток. Древние славяне хранили его в свинцовых сосудах и, видимо, стали называть так металл (свинец). «Слово олово, - пишет Н. А. Фигуровский, - стоит также в связи с названием другого жидкого тела - масла (oleum)... родственные олову слова - оловце (свинцовая лампада) и оловянник (сосуд из олова)».

Еще раньше люди познакомились с медью , примерно 6,5-7 тысяч лет назад. Некоторые археологи считают, что человек познакомился с этим металлом в более ранний период.

В 60-х годах в Чатал-Гайюке были найдены слои докерамического неолита. Анализ этих слоев показал, что они относятся к VII-VI тысячелетию до нашей эры. При этих раскопках были найдены медные шилья. Поэтому некоторые ученые стали утверждать, что знакомство человека с произошло 9 тысяч лет до новой эры. Однако последующие исследования не подтвердили этого предположения.

Медные руды были часто загрязнены различными примесями. Возможно, что среди них оказались и черные камешки оловянной руды. Содержащая олово руда, попадая в плавильную печь, смешивалась с медью и образовывался сплав - бронза (от персидского слова «бронтпсион», что означает «сплав»).

Еще в древности было хорошо известно, что добавка некоторых минералов к медной руде облегчает выплавку из нее металла.

Вполне вероятно, что куски оловянного камня были добавлены к медной руде в качестве плавня (флюса).

Бронза, полученная случайно при выплавке меди, быстро завоевала признание у людей в те далекие времена. Новый сплав золотисто-желтого цвета был гораздо тверже меди, прекрасно ковался, отлично отливался в формы, хорошо обрабатывался.

«Как был открыт человеком этот замечательный сплав, мы не знаем, - пишет академик А. Е. Ферсман. - Можно предположить, что человек много раз плавил медную руду с примесью олова (такие «комплексные» месторождения меди и олова встречаются) и в конце концов заметил результат совместной плавки и понял ее значение».

Замечательные качества бронзы помогли почти повсеместно вытеснить медь из обихода доисторического человека. Из бронзы стали изготовлять оружие - секиры, мечи, кинжалы, наконечники, стрелы, украшения - браслеты, подвески. Бронзовый век сыграл значительную роль в культуры человечества.

Древние металлурги, заметив, что куски оловянной руды оказывают столь благотворное действие на плавку меди, вероятно, попытались плавить черные камешки без медной руды. В плавильной печи появились капли серебристо-белого металла - олова.

В Бронзовый век, однако, этот металл в чистом виде не нашел широкого применения. Из олова умельцы делали украшения на оружии и сосудах. В одном из древнегреческих мифов рассказывается, как бог огня и кузнечного ремесла Гефест выковал для героя Ахилла щит и украсил его орнаментом, изготовленным из олова. Об этом упоминает автор Илиады - Гомер.

Оценив по достоинству олово и научившись его выплавлять из руды, древние рудознатцы занялись поиском этой руды. Они не располагали тогда таким богатым арсеналом различных приборов и методов, каким снабдила наука и техника современных геологов.

Несколько лет назад у геологов «на вооружении» появился новый оригинальный прибор - гамма-резонансный оловоискатель. С его помощью можно определить содержание металла в руде с точностью до сотых долей .

Подобно охотникам-следопытам, рудознатцы были очень наблюдательны, и это им часто помогало раскрывать тайну подземных кладов. Точно также вода и деревья часто подсказывали рудознатцам местонахождение руды. Они по опыту знали, что в местах залегания руд часто растут определенные виды деревьев, кустов, грибов. Например, в одних местах над залежами медных руд почти всегда растет качим (трава, реже полукустарник из семейства гвоздичных), в других - дуб.

Есть много и других примет, по которым рудознатцы находили оловянные руды. В холодные осенние ночи иней слегка припорашивает землю и серебрит верхушки деревьев. Замечено, что с лучами солнца быстрее всего иней тает там, где залегает какая-нибудь руда. Это происходит потому, что в местах залегания рудной жилы земля прогревается быстрее (ведь окислы металла обладают более высокой теплоемкостью, чем почва). Еще в средние века известный металлург Агрикола объяснял более быстрое таяние инея над залежами руд тем, что темные предметы нагреваются быстрее.

Не имея никаких совершенных приборов, древние рудокопы, пользуясь лозой, вели разведку различных металлических руд, в том числе и оловянных. Одни считали наиболее подходящими для поиска руд ветви орешника. Другие находили медь с помощью ясеневых лоз, свинец и особенно олово - пользуясь сосновыми ветками.

Некоторые современные ученые рассматривают это удивительное искусство владения «волшебным прутом» как простое шарлатанство или же считают отголоском древних суеверий.

Другие ученые, поражаясь необыкновенному искусству древних рудознатцев находить россыпные и жильные металлов, готовы приписать им особую восприимчивость к магнитным полям и электрическим слабым токам, образуемым рудными залежами. А есть и такие, которые готовы поверить в сверхъестественные чувства людей Бронзового века, например их способность «видеть» пальцами. Разумеется, подобные домыслы не соответствуют действительности.

В начале своего знакомства с оловом древние люди добывали оловянную руду из россыпей, преимущественно в речных наносах. В те времена им были уже знакомы и техника его отмывки от . Позднее стали добывать олово из глубоко залегающей оловянной руды.

Добывали руды открытым способом. В открытых выработках делали перемычки (целики), защищавшие рудокопов от завалов и гибели под обломками, хотя и нередко бывали несчастные случаи. До сих пор при археологических раскопках древних выработок в Сибири, Казахстане, на Алтае и других местах на территории нашей страны и во многих , где уже в бронзовом веке добывали медь и олово (в Англии, Китае и Перуанская республика), находят скелеты погибших горняков.

В подземных штольнях также оставляли целики для защиты от возможных обвалов. Но это были уже столбы или колонны, выложенные из породы, которые поддерживали свод штольни. Такие крепления встречаются во многих древних выработках, где добывали медь и олово. Нередко подобные подпорки складывали из каменных плит или глыб, а в местах, где было много леса, часто использовали деревянные столбики. В те далекие времена в подземные галереи спускались по вырубленным в породе ступеням или деревянным лестницам. Чаще всего это были бревна с зарубками или же деревья с обрубленными толстыми сучьями. На Урале, в одном из древних рудников, была найдена такая лестница. По таким примитивным лестницам рудокопы не только спускались в штольни и выработки, но и поднимали руду в корытах, кожаных сумках, плетеных корзинах.

Вначале олово из руды выплавляли на костре. Пламени костра было достаточно, чтобы извлечь легкоплавкий металл (ведь олово плавится уже при 232 градусах). Позднее олово стали выплавлять в ямах, стенки которой обмазывали плотным слоем глины, чтобы защитить ее от просачивания грунтовых вод и утечки расплавленного металла в землю. В яму слоями накладывали дрова и куски руды.

Несколько иной была технология выплавки олова из россыпей. Сначала в яме разводили костер, а когда дрова сгорали, насыпали на горящие угли руду.

И в том, и в другом случае образовавшийся при плавке жидкий металл скапливался на дне ямы. Его вычерпывали специальными ковшами и разливали в формы.

Позднее для улучшения процесса горения топлива в яме стали использовать мехи для подачи воздуха. Это небольшое усовершенствование позволило увеличить емкость ям, их стали делать более широкими и глубокими. Но со временем плавки стали большими, и металл трудно было доставать со дна ямы.

Выручила, как мы теперь говорим, рабочая смекалка. Кто-то из древних металлургов придумал новый «агрегат» для плавки руды - большую деревянную бочку, обмазанную внутри огнеупорной глиной. Такая «футеровка» надежно выдерживала высокую температуру. вскоре вытеснило ямы (печи). Оказалось, что выплавлять металл в бочках, в которые засыпали послойно уголь и руду, и также мехами вдувать воздух ничуть не хуже, чем в ямах, а гораздо удобнее.

Проходили века, совершенствовалась техника выплавки металлов. На смену бочкам пришли небольшие кустарные шахтные печи (такие самодельные печи применялись в Китае для выплавки олова еще в начале XX века). Такую печь, сложенную из кирпича или камня, вначале разогревали дровами и углем, а затем загружали в нее послойно оловянную руду и древесный уголь (а позднее кокс). Воздух также вдували мехами, но так как его требовалось гораздо больше, чем раньше, то воздуходувку стали приводить в движение с помощью лошадей. В дальнейшем конную тягу сменили водоотливные колеса.

Однако при плавке оловянной руды в примитивных шахтных печах не удавалось достичь такой температуры, при которой расплавлялся бы и шлак. Пустая порода оставалась в печи в виде спекшейся плотной массы. Поэтому по окончании плавки приходилось печь разбирать для удаления шлака.

Со временем олово стали выплавлять в шахтных печах гораздо больших размеров и при более высокой температуре, при которой образовывался расплавленный шлак. Но одновременно с восстановлением олова происходило восстановление и железа. В результате получалось большое количество различных тугоплавких железо-оловянных сплавов (металлурги их называют «гартлингами»). Они заметно снижали выход чистого олова. Недостатки шахтных печей заключались еще и в том, что в них можно было плавить только такие оловянные руды, которые состояли из крупных кусков. А таких руд попадалось мало. Позднее металлурги научились перерабатывать в таких печах руды и концентраты, которые получали простой промывкой. Их предварительно спекали на особых решетках.

Техника выплавки олова совершенствовалась медленно. Лишь в начале XVIII века, впервые в Англии, на смену шахтным печам пришли отражательные печи с колосниковыми топками. Для их нагрева использовали пылевидный уголь, а позднее .

У отражательных печей было много преимуществ по сравнению с. шахтными, поэтому они стали их быстро вытеснять. Однако в отражательных печах не удавалось поднять температуру нагрева руды при плавке выше 1300-1350 градусов. Чтобы полностью извлечь олово из шлаков, приходится добавлять много извести, которая повышает температуру плавления до 1400-1500 градусов.

В 30-40х годах извлекать олово из шлаков стали в электрических печах, в которых можно получать более высокие температуры. Теперь в таких печах плавят богатые оловом концентраты (если в них нет примеси железа), то есть выплавляют металл без дополнительной обработки шлаков. К тому же производительность электрических печей (на единицу площади) гораздо выше, чем у отражательных. Применение электрических печей дало возможность повысить культуру производства и улучшить условия труда металлургов.

Несмотря на прогресс техники добычи и плавки, олово по-прежнему дорогой металл.

Крик дьявола. В течение многих столетий алхимики в разных странах безуспешно пытались получить золото из неблагородных металлов. Алхимики учили, что природа всегда стремится создавать совершенные предметы, например золото , но неблагоприятные обстоятельства мешали этому, и вместо золота образовались неполноценные металлы - медь, свинец, олово. Но для того, чтобы превратить свинец или олово в золото , нужно сначала приготовить «философский камень» или эликсир.

Алхимики настойчиво и упорно искали этот чудодейственный эликсир.

Алхимики, пользуясь учением древнегреческого философа и естествоиспытателя Аристотеля, утверждали, что все металлы состоят из двух элементов-носителей - серы и ртути. состоят из чистой ртути - основы металличности, а неблагородные имеют еще большую примесь серы - начала изменяемости. Следовательно, чтобы получить золото , нужно суметь удалить серу.

Однако все их старания были напрасны. Они не нашли существующего «философского камня» и не смогли превратить неблагородные металлы в золото .

Несмотря на всю сложность их учения, алхимики внесли весомый в дальнейшее развитие химии. В поисках мифического эликсира они открыли много солей и кислот, разработали способы их очистки.

Испытывая разные металлы с целью их превращения в золото , алхимики большое внимание уделяли олову. Их привлекали в первую очередь его загадочные свойства. Олово, один из самых мягких металлов на нашей планете, при сплавлении с медью придавал ей твердость.

Но еще больше, пожалуй, поражал алхимиков треск, который явственно слышался при сгибании оловянной палочки. «Это голос дьявола, который вселился в металл», - говорили они.

Алхимики назвали непонятное им явление (которое заметил знаменитый алхимик Габер) «оловянный крик». В наше время сохранилось это название, но теперь оно не связано со звуками, издаваемыми дьяволом, а происходит от английского слова creak - скрип, хруст. Разгадана ныне и причина (не наблюдаемого у других металлов) этого треска. «Хрустит» палочка олова потому, что его кристаллы слегка смещаются и трутся друг о друга.

Олово - тягучий и легкоплавкий металл обладает хорошей ковкостью, уступая лишь благородным металлам и меди, и поэтому из него легко можно получить тонкие листы фольги (станиоль). Серебристо-белые, со слабым голубоватым оттенком в проходящем свете они становятся коричневыми. Подобно другим металлам олово образует с некоторыми неметаллами (хлором, серой, фтором, бромом) соли, которые применяются в народном хозяйстве. Олово не вступает в непосредственное взаимодействие ни с углеродом, ни с азотом. «Равнодушно» оно и к прямым контактам с водородом и кремнием. Однако косвенным путем можно получить гидриды и нитриды олова.

Если бросить кусочек олова в разбавленный раствор соляной или серной кислот, оно будет очень долго растворяться. Так же медленно этот металл будет реагировать и с водными растворами других сильных кислот (азотной, бромистоводородной), в органических кислотах (уксусной, щавелевой) олово практически не растворяется. В чем же причина такого поведения олова? Объясняется она незначительной разницей в величинах нормального потенциала олова и водорода, в ряду напряжений, в котором все металлы (и водород) располагаются согласно своей химической активности. Чем левее в этом ряду и дальше от водорода находится металл, тем он быстрее вытесняет водород из кислот. Олово же в этом ряду располагается в близком соседстве с водородом.

Олово растворяется не только в кислотах (разбавленных и концентрированных), но и в щелочах, образуя в зависимости от условий реакции две группы соединений - станниты и станнаты.

Химиками получены различные соединения олова с кислотами - фосфаты, нитриды, сульфаты. Все они представляют собой твердые кристаллические вещества. В отличие от них нитрат олова Sn(NO3)2 - подвижная жидкость, хорошо растворимая в воде. И еще одно необычное свойство у этого производного олова - оно плавится при температуре минус 20 градусов. В промышленности чаще всего применяются соединения олова с серой и хлором.

И гончару, и красильщику. В конце XV века алхимик Василий Валентин в тщетной надежде получить чудодейственный эликсир стал прокаливать смесь поваренной соли, квасцов и железного купороса. Эликсира не получилось, но в сосуде образовалась новая, неизвестная ранее жидкость. Она дымила на воздухе. При вдыхании этот дым вызывал сильный кашель. Если жидкость пробовали на вкус, она обжигала язык. Капельки жидкости, попавшие на ткань, прожигали ее, она разъедала и растворяла металлы. Это была соляная кислота. Алхимик назвал эту жидкость «кислым спиртом». Спустя почти полвека другой европейский алхимик Андрей Либавиус заинтересовался «кислым спиртом». Он повторил опыт своего предшественника и получил точно такую же едкую жидкость. Прежде всего он решил выяснить, как действует «кислый спирт» на металлы. Медь, железо, цинк растворялись в этой едкой жидкости. Растворив олово в «кислом спирте», Либавиус выпарил полученный раствор и получил белые кристаллы ромбической формы. Что же это было за вещество? Теперь мы называем его хлористым оловом. Тогда же никто еще не имел представления о хлоре. Этот элемент был открыт впервые в 1774 году знаменитым шведским химиком Шееле и позднее английским ученым Дэви (1810 год). Мы не знаем, как алхимик назвал полученную им соль, однако он стал проводить с ней разные опыты. Прежде всего решил проверить действие нового вещества на тканях. Будет ли эта соль также разрушать их, как и кислый спирт? Оказалось, что хлористое олово отнюдь не злейший враг текстильных материалов.

Еще в глубокой древности люди научились окрашивать шерсть и ткани красителями, которые добывали из цветов, плодов и корней различных растений. Применялись тогда некоторые краски и животного происхождения. Античный пурпур, которым когда-то красили тоги и мантии персидских царей, получали одного из видов моллюсков. В Южной Америке издавна индейцы окрашивали ткани в алый цвет, пользуясь кармином - краской, которую получали из кошенили - тлей, собираемых на кактусах.

Древние красильщики были хорошо знакомы с протравами - веществами, упрочняющими окраску тканей. Чаще всего их получали из природных минералов. Так, греческие и римские красильщики широко пользовались при окраске тканей квасцами. Греческий историк Геродот, живший в пятом веке до нашей эры, называл их «алюмин», а четыреста лет спустя ученый Древнего Рима Плиний Старший называл их «алюмен».

Хорошей протравой оказалось и хлористое олово. Однажды Либавиус опустил в его раствор кусок яркоокрашенной ткани, окраска не только не потускнела, а стала еще ярче.

Однако потребовалось еще несколько десятков лет, прежде чем открытие алхимика нашло практическое применение. Одним из первых, кто применил оловянные протравы в красильном деле, был голландский химик Дреббель. Вскоре это открытие завоевало широкое признание у красильщиков многих стран.

В Европе в те времена еще не умели обрабатывать и изготовлять хлопчатобумажные ткани. Их привозили из стран Ближнего Востока и Индии. Большим пользовалась тогда на европейских тонкая хлопчатобумажная ткань калико (позднее ее стали называть коленкором), которую привозили из индийского города Калькутты. Эта ткань привлекла своими оригинальными расцветками. Красильщики с помощью оловянных протрав наносили на ткань красные узоры, цветы, несложные рисунки. Со временем оловянные протравы красильщики стали использовать и для окраски шерстяных и шелковых тканей.

Уже более ста лет хлористое олово помогает химикам создавать прочные, невыгорающие на солнце органические краски. Его используют и во многих других производствах, так как хлористое олово является сильным восстановителем, хорошо растворяется в воде, спирте, эфире и многих других органических растворителях.

Многими ценными качествами, которые широко используются в некоторых отраслях промышленности, обладает и близкий «родственник» хлористого олова - четыреххлористое олово. Получают его, пропуская струю сухого хлора в жидкое олово. Подобно хлористому олову оно хорошо растворяется в воде и разных органических растворителях, но в отличие от него может само растворять серу, фосфор, йод.

Уже более двухсот лет назад научились изготовлять красивые печатные ситцы в нашей стране, пользующиеся неизменным успехом у женщин. Четкий и прочный печатный рисунок или орнамент на ситце получают благодаря четыреххлористому олову. Применяют его текстильщики и в качестве аппретуры (от французского apprêter - окончательно отделывать ткани). Для тех же целей с успехом применяется в текстильной промышленности и станнат натрия (Na2SnO3). Станнаты легко получить - достаточно сплавить двуокись олова (SnO2) с какой-нибудь щелочью или же растворить свежеприготовленный гидрат двуокиси олова в растворах щелочей. Станнаты используют не только текстильщики, но и радиотехники. Так, станнат бария широко применяется в различных радиотехнических приборах - он превосходный диэлектрик.

Двуокись олова издавна использовали в гончарном деле. Мы не знаем имени того человека, который первый вылепил тысячи лет назад из глиняного теста горшок или кувшин и стал обжигать его на огне. Но с тех пор глиняная посуда пользуется спросом у населения во всех странах мира. На первых порах изделия древних гончаров имели некрасивый внешний вид. Но самый главный недостаток глиняной посуды - пористость внутренних стенок. Такая посуда была как бы пронизана множеством капилляров - мельчайших канальцев, через которые просачивалась вода. В таких глиняных сосудах не удавалось сохранить воду или другую жидкость даже в течение нескольких часов.

Долгое время не могли найти средство, с помощью которого можно сделать поверхность глиняных изделий непористой. Но, как это нередко бывало в истории великих открытий, помог случай. Как-то на один из приготовленных для обжига глиняных горшков попало немного смеси песка с содой. Каково же было удивление гончара, когда, вытащив из печи после обжига свои горшки, он на одном из них увидел покрывающую всю внутреннюю поверхность горшка гладкую, блестящую пленку.

Так случай помог древним гончарам закрыть поры в изделиях надежной стекловидной пленкой. Ее назвали глазурью. Позднее стали добавлять в глазурь известь, а в некоторых местах, где была оловянная руда, касситерит. Постепенно научились делать разноцветную глазурь, прибавляя к смеси песка и соды разные вещества.

Случайное открытие глазури повлекло за собой впоследствии не менее случайное открытие стекла. Как-то гончар нанес на один из своих горшков слой глазури весьма неаккуратно. После обжига вместо ровной, гладкой пленки глазури в горшке был обнаружен небольшой блестящий комочек стекла. Так было положено начало стеклоделию.

Уже первые стеклоделы знали, что с помощью двуокиси олова можно получить красивую глазурь белого цвета. Следовательно, с небольшой добавкой касситерита можно приготовить и красивое молочно-белое стекло. Такое стекло было красиво, но непрозрачно. Световые лучи проходили через него, но видеть сквозь него нельзя было. Позднее стеклоделы называли такие стекла «глухими». Получали их путем добавления в шихту порошков различных веществ, но главным образом двуокиси олова или мелкоизмельченного касситерита. И в настоящее время приготовляют «глухие» стекла для разных технических целей. Получают с добавкой двуокиси олова и белую глазурь.

Пожалуй, еще раньше, чем стали варить прозрачное и непрозрачное стекло, стеклоделы научились изготовлять цветное. Много веков назад заметили, что примеси некоторых материалов окрашивают стекло в разные цвета: кобальт - в синий, хром - в желто-зеленый, марганец - в фиолетовый.

Круглосуточно вот уже более сорока лет горят на башнях Московского Кремля рубиновые звезды - символ победы в нашей стране, .

Для того чтобы звезды также ярко сверкали днем, как и ночью, светло-красное стекло, из которого они сделаны, положили на подкладку из молочно-белого стекла. А его приготовили не без участия двуокиси олова.

И химикам, и земледельцам. Разнообразен изделий, изготовляемых из широко применяемого в разных отраслях промышленности - поливинилхлорида. Но при всех своих хороших качествах он «боится» солнца. Для защиты его от действия световых лучей пользуются оловоорганикой - в качестве стабилизаторов применяют дибутил и диоктилстаннаны, моноалкилстаннаны, диалкилоловолаураты и диалкилоловодималеаты.

В 50х годах химики разработали способ синтеза полимеров из разных углеводородов с регулярной структурой молекул. Их называют стереорегулярными или изотактическими. Практическая ценность получения таких полимеров заключается в возможности создания материалов с любыми заданными свойствами. И здесь не обойтись без оловоорганических катализаторов. Трудно переоценить важность внедрения этого метода в химической промышленности.

Переработка твердого поливинилхлорида с целью получения из него прозрачных пленок, пластин и пластмассовых сосудов производится при температуре 180°С. Чтобы полимер не растекался, нужны термостабилизаторы. И тут на помощь приходит оловоорганика - диалкилоловомеркаптаны и диалкилоловодиизооктилгликоляты.

Шины - важнейшая принадлежность . Чем дольше они будут служить, тем дешевле эксплуатация автомашины. Поэтому химики стараются повысить их проходимость, создавая новые типы синтетического каучука, из которого можно изготовлять более прочную и эластичную резину.

В борьбе за долговечность шин химики несколько лет назад одержали еще одну победу - из некоторых органических веществ, получаемых при сухой перегонке каменного угля и переработке нефтепродуктов, создали новый вид синтетического каучука - уретан. Он изнашивается в два раза медленнее природного. Помогли катализаторы - диазураты олова, которые служат отвердителями силиконовых каучуков и эпоксидных смол.

Много огорчений и хлопот приносит морякам и водникам обрастание килей судов ракушками и другими морскими и пресноводными организмами. Обычно для защиты подводных частей кораблей и портовых сооружений применяют лакокрасочные и пластмассовые покрытия, которые изготовляют с добавками соединений меди и ртути, реже цинка и свинца. Однако они имеют большой недостаток - вызывают электрохимическую коррозию металлических частей. Гораздо эффективнее оказались защитные покрытия на основе оловоорганических полимеров или сополимеров с органическими или элементоорганическими мономерами.

Оловоорганические стекла надежно защищают от ультрафиолетовых и рентгеновских лучей. Немало ценных услуг оказывают оловоорганические препараты земледельцам. С тех пор, как человек научился возделывать землю, выращивать хлебные злаки и овощи, он непрерывно ведет борьбу с сорняками. Химики создали сотни новых препаратов - гербицидов, использующихся для уничтожения сорняков, но не причиняющих вреда культурным растениям. Среди них - тривинилхлорстаннан и некоторые его производные.

Еще более эффективны оловоорганические препараты в борьбе с вредителями сельского хозяйства. Ведь даже теперь, при современных методах земледелия, потери , причиняемые вредителями, достигают 25-30 процентов. Еще более велики потери урожая картофеля от болезней и вредителей.

Быстро уничтожает свекловичных и картофельных вредителей выпускаемый у нас препарат «брестан» (трифенилоловоацетат. Достаточно разбрызгать 600 литров его 0,01процентного раствора на гектар.) Кроме того, он является надежным средством борьбы с устойчивыми грибковыми заболеваниями тропических и субтропических культур, стимулирует рост растений.

Ядовитые свойства многих оловоорганических соединений, известных более ста лет назад (триэтилстаннанол, гексабутилдистаннооксан), помогают теперь бороться с загрязнениями окружающей среды, очищать сточные воды промышленных , бороться с домовым грибком и другими вредителями древесины.

Прекрасными антисептиками, полностью уничтожающими даже при высокой плотности заражения кишечную палочку, золотистого стафилококка, бруцеллу и ряд других микробов, оказались сополимеры оловоорганических акрилатов с малеиновым ангидридом, стиролом, винилхлоридом, этиленом и бутадиеном. Ветеринары охотно используют оловоорганические препараты для борьбы с глистами у домашних животных.

Для усиления направленной биологической активности в препараты вводят некоторые добавки органических веществ. Например, раствор смеси бензилтриэтиламмоний хлорида и гексабутилдистаннооксана уничтожает золотистый стафилококк за 5 минут.

Ученые разработали много способов синтеза разнообразных оловоорганических препаратов. Исходным сырьем служат либо чистое металлическое олово, либо сплавы его, но чаще всего четыреххлористое олово и различные органические (а нередко и элементоорганические) соединения. Реакция протекает в присутствии катализатора.

Оловоорганика пока еще «младенец». Ей предстоит большое будущее. Порукой тому ее замечательные качества.

И автомобилисту, и печатнику. В машине, станке, двигателе есть вал. При вращении его возникает сильное трение, которое вызывает быстрый трущихся частей. Как уменьшить вредное влияние трения, как его устранить? Можно воспользоваться смазкой. В идеальных условиях работы вал и вкладыши подшипника не должны соприкасаться друг с другом и, следовательно, они не изнашиваются. В обычных же условиях работы подшипников этого достигнуть не удается. Для уменьшения коэффициента трения пользуются антифрикционными сплавами, которые должны быть твердыми и в то же время достаточно мягкими и пластичными, чтобы в случае разной конфигурации вала и вкладыша вкладыш мог бы «прирабатываться» к нему.

В поисках подходящего состава для изготовления подшипникового сплава металлурги обратили внимание на свинец и олово как наиболее мягкие металлы.

Первый антифрикционный сплав, предложенный в 1839 году инженером И. Баббитом, содержал 83 процента олова, 11 процентов сурьмы и 6 процентов меди. В дальнейшем подобные антифрикционные сплавы с несколько измененным содержанием составных частей стали называться баббитом (по имени изобретателя) и получили широкое распространение. В настоящее время, кроме стандартных баббитов, в нашей стране и за границей изготовляют сплавы с повышенной пластичностью.

В мягкой пластической массе сплава равномерно распределены кристаллы твердого металла, которые хорошо сопротивляются истиранию и в случае необходимости вдавливаются внутрь вкладыша.

Олово - дорогой и дефицитный металл, поэтому теперь все чаще стараются заменять подшипники с баббитовыми вкладышами роликовыми и шариковыми подшипниками.

Оловянные сплавы на несколько сот лет раньше стали использовать печатники и типографы.

Он решил изготовлять шрифт для печатания, отливая буквы в металлической форме. Изготовлена она была из свинца, дном в ней служил медный брусочек с выбитым на нем углубленным рисунком буквы. Вначале Гутенберг отливал буквы из олова с небольшой добавкой свинца. Позднее он подобрал лучший сплав со значительной примесью сурьмы (свыше 20 процентов), получивший название гарт (от немецкого слова «hart» - твердый). Он оказался гораздо прочнее, чем сплав свинца с оловом, и вполне оправдывал свое название.

Типографский сплав, составленный Гутенбергом с небольшими изменениями в содержании составных частей, применяется до сих пор, но олово в нем по-прежнему занимает главенствующее место.

Благодетель человечества. В те годы, когда Гутенберг отливал из олова печатные буквы, в и Австрии, и Бельгии, Англии и широко использовалась оловянная посуда. Изготовлять оловянные ложки и чашки, чаши и кувшины, тарелки и блюда начали еще в XII веке, когда в Рудных горах в Богемии были открыты богатые залежи оловянной руды. Для лучшего розлива жидкого металла олово сплавляли со свинцом (10: 1).

Позднее кухонную и столовую посуду стали изготовлять из сплава олова с более высоким содержанием свинца (до 15 процентов), а также добавками сурьмы, а иногда небольших количеств меди и цинка. Один из таких сплавов назывался «британский металл».

Изготовляли оловянную посуду в формах из латуни или железа, реже из гипса. Крышки, ручки, отдельные части соединяли с помощью пайки. Особенно высоко ценилась посуда с художественным орнаментом, плоскими и рельефными изображениями растений, животных. В центральной Европе славились изделия из олова немецких мастеров. В Германии не было города, где не работал хотя бы один посудных дел мастер. Только в Нюрнберге было 159 оловянщиков. Каждое новое изделие клеймили клеймом мастера или города. Гордостью городских ремесленников считались большие оловянные кувшины, изготовленные как символ цеха.

В течение столетий сохранялись традиции художественной отделки и формы, характерные для того или иного города и местности.

Наряду с укоренившимися народными мотивами на художественную отделку кубков, чаш, подсвечников, кувшинов оказывало влияние и классическое искусство.

В последние годы все меньше получают олова из вторичного сырья из-за уменьшения его содержания в нем, что вызвано более широким применением электролитического способа лужения, который позволяет снизить затрата олова на единицу продукции.

Первый завод, который начал выплавлять олово в Советском Союзе из руд коренных месторождений, был построен в 1934 году в Подольске под Москвой. Работал он семь лет на богатых оловом рудах (концентрат, поступавший для переработки на завод, содержал от 40 до 70 процентов олова). Сначала из концентрата путем обжига удаляли примеси мышьяка и серы. К огарку добавляли флюсы и плавили в отражательных печах. Полученное черновое олово рафинировали в котлах со специальными добавками, связывающими примеси в тугоплавкие соединения. При таком процессе выплавки оставались шлаки с высоким содержанием олова. Их дорабатывали, в отвал уходили шлаки с содержанием не более одного процента олова. На заводе производили и вторичное олово из разного лома и отходов, содержавших металл.

В связи с быстрым ростом добычи оловянных руд и производства концентрата в предвоенные годы в 1940 году было начато строительство второго оловянного завода в Новосибирске. Пуск его был намечен на 1943 год. Вероломное нападение гитлеровцев на нашу страну изменило эти планы. Осенью 1941 года Подольский завод был эвакуирован в Новосибирск. Рабочие и инженеры доставили сюда оборудование демонтированного Подольского завода, а также концентрат и черновое олово. Спустя два месяца завод стал уже выпускать оловянно-свинцовые сплавы.

Предприятие на первых порах столкнулось со многими трудностями, в частности все работы по загрузке и разгрузке сырья и материалов, их транспортировке, приготовлению шихты осуществлялись вручную. Тем не менее завод выполнил свои производственные планы и без перебоев снабжал оловянно-свинцовым сплавом своих заказчиков.

Вначале на Новосибирском заводе пользовались технологией выплавки олова и производства сплавов, принятой на Подольском оловянном заводе. Первая плавка была выдана из первой отражательной печи 23 февраля 1942 года. Спустя полгода вступили в строй еще несколько отражательных печей. Позднее на заводе начали разработку более современной технологии выплавки олова. По новой схеме предусматривалось обогащение наиболее бедных оловянных концентратов сложного состава. Доведенные концентраты плавились в электропечи.

Освоение нового технологического производства было закончено лишь в послевоенные годы. В 1947 году внедрили схему доводки концентратов, которая применяется и до сих пор с некоторыми изменениями, а в конце 1948 года внедрен процесс электроплавки.

С 1953 года завод стал выпускать олово и баббиты с высоким содержанием олова. Это стало возможным благодаря усовершенствованию процесса рафинирования, позволившего удалить все примеси из чернового олова.

Много и других технических усовершенствований внедрено на заводе: метод зонной плавки, электроплавка шламовых концентратов, вакуумное рафинирование олова.

Все эти усовершенствования позволяют перерабатывать более бедные концентраты и дают возможность получать олово высокой чистоты. Однако коллектив завода не останавливается на достигнутых успехах. В ближайшие годы будет внедрена еще более совершенная схема производства олова, которая обеспечит еще более полное извлечение из концентрата олова и других металлов. Она предусматривает химические процессы обогащения, прямоточное выщелачивание, восстановление при низких температурах.

Наряду с Новосибирским оловянным заводом оловянно-свинцовистые сплавы выпускает Рязанский завод по производству и обработке цветных металлов, который перерабатывает также и вторичное сырье. В ассортименте продукции завода еще цинковый купорос и различные полупродукты. Одно из достижений завода - успешная переработка шлаков с низким содержанием олова.

Металлургические заводы добились постоянно растущих высоких технических и экономических показателей производства, в частности более высокого процента извлечения металла. Благодаря тесному творческому содружеству с научно-исследовательскими и проектными институтами за десятую пятилетку удалось увеличить извлечение олова на 1,1 процента. Зарубежные охотно покупают некоторые разработки наших ученых и инженеров, успешно применяемые на заводах.

Однако до сих пор часть ценных компонентов концентрата уходит в хвосты при доводке и накапливается в отвалах. Выполняя решения XXVI съезда КПСС, разрабатываются и внедряются такие схемы производства олова, которые позволят широко использовать внутренние резервы завода с учетом ухудшения качества перерабатываемой руды (наличие сульфидов, турмалина, мышьяка и других вредных примесей).

В Центральном научно-исследовательском институте оловянной промышленности (ЦНИИолово) разработана эффективная и экономически выгодная технология производства черновых концентратов с централизованной доводкой, которая даст возможность полностью использовать все отходы. Для переработки получаемых при централизованной доводке сульфидных полиметаллов можно воспользоваться циклонно-электротермическим способом либо обработкой в вакуумкипящем слое с применением различных вариантов хлоридовозгонок. Централизованная доводка между обогатительным и металлургическим процессом позволит, во-первых, извлечь не менее половины олова из черновых концентратов, во-вторых, сократить почти в два раза количество бедных оловом продуктов, которые поступают на металлургическую переработку.

Внедрение обогатительно-металлургического комплекса даст возможность практически использовать для переработки любые руды независимо от их качества. А это в свою очередь будет способствовать расширению сырьевой базы оловодобывающей и перерабатывающей промышленности.

Изделия из олова

Планету, названную именем бога-громовержца Юпитера, средневековые алхимики соотносили с оловом. Трудно представить этот мягкий и податливый металл символом грозного и мстительного бога. Чем же руководствовались алхимики, устанавливая эту связь?

Принятое в науке латинское название олова «станнум» образовано от санскритского корня «ста», означающего в переводе «стойкий», «твердый».

Пока что не удалось установить точно - то время, когда олово в чистом виде стали использовать для изготовления изделий. Известны лишь отрывочные сведения, которые изредка дополняются благодаря археологическим раскопкам. То в одном, то в другом центре древних цивилизаций встречаются единичные находки из почти чистого олова. Так, в одном из древнеегипетских могильников, относящихся к I тысячелетию до н. э., были найдены оловянный пузырек и кольцо.

С древнейших времен олово выплавляли из так называемого оловянного камня - касситерита, получившего название от группы островов в Северной Атлантике 3.5 Изделия из олова



Древние финикийцы, бывшие не только искусными металлургами, но и замечательными мореплавателями, отправляясь за оловянным камнем к Кассиридам, брали на борт корабля якорь из полой колоды кедра, заполненный для тяжести камнями. По прибытии на место трюмы корабля загружались оловянной рудой. Чтобы не везти обратно обычный булыжник, вместо него якорные колоды заполняли оловянной рудой. Таким образом, на корабле оставался только полезный груз.

Хоть олово и было известно человеку уже в 4 тысячелетии до н. э. Этот металл был малодоступен и дорог, так как изделия из него редко встречаются среди римских и греческих древностей. Об олове есть упоминания в Библии, Четвертой Книге Моисеевой.

В наше время олово используется в основном как безопасное, нетоксичное, коррозионностойкое покрытие в чистом виде или в сплавах с другими металлами. Главные промышленные применения олова - в белой жести (лужёное железо) для изготовления тары пищевых продуктов.

Техника наведения «морозных узоров» в основе своей была очень проста. Покрытый оловом металл нагревали, а затем резко охлаждали, обрызгивая холодной водой, а то и окуная в воду. При этой операции изменялась кристаллическая структура олова. Чтобы ее проявить, сделать зримой, слой олова смачивали соляной кислотой. Выявленный кристаллический рисунок мерцал на металле, словно мозаика, выложенная из сверкающих льдинок. Под тонким слоем цветного лака переливающиеся «морозные узоры» выглядели еще более выразительно. Но какой бы простой ни была технология наведения «морозных узоров», одним только мастерам были известны технологические тонкости, позволявшие как можно более глубоко раскрыть красоту металла. Хранителем этих «секретов» и душой промысла долгие годы оставался Пантелеймон Антонович Сосновский, умерший в 1972 году в возрасте 99 лет. Он был последним мастером древнего художественного промысла.

Есть у олова болезнь, которую называют «оловянной чумой». Металл «простужается» на морозе уже при -13°С и начинает постепенно разрушаться. При температуре -33°С болезнь прогрессирует с невероятной быстротой - оловянные изделия превращаются в серый порошок.

В конце прошлого века это явление подвело участников экспедиции, работавшей в Сибири. На сильном морозе «заболела» вдруг оловянная посуда. В короткий срок она разрушилась настолько, что использовать в кулинарии ее было уже нельзя. Возможно, экспедиции пришлось бы прервать начатую работу, если бы ни миски и ложки, которые удалось вырезать из дерева. Сталкиваясь неоднократно с «оловянной чумой», люди наконец пришли к выводу, что олово можно использовать только там, где ему не грозит встреча с морозами.


3.19 Содержание олова 95



Как уже говорилось, олово имеет непосредственное отношение к рождению мелодичных звуков в самых различных колоколах, поскольку оно входит в состав медных сплавов, применяемых для их отливки. Но оказывается, оно способно петь вполне самостоятельно: у чистого олова не менее выдающиеся музыкальные способности. Слушая торжественные звуки органной музыки, мало кто из слушателей догадывается, что чарующие звуки рождаются в большинстве случаев в оловянных трубах. Именно они придают звуку особую чистоту и силу.

Исстари человек использовал не только олово и его сплавы, но и его различные химические соединения. Золотисто-желтые кристаллы дисульфида олова применяются мастерами для имитации сусального золота при золочении гипсовых и деревянных рельефов.

Водным раствором дихлорида олова обрабатывают стекло и пластмассу перед нанесением на их поверхность тонкого слоя какого-либо металла. Дихлорид олова входит также в состав флюсов, применяемых при сварке металлов.

Оксид олова применяется в производстве рубинового стекла и глазурей.

Диоксид олова - белый пигмент, применяемый для окраски эмалей и непрозрачных глазурей. В природе это оловянный камень касситерит, служащий сырьем для выплавки олова. Искусственно его получают прокаливанием олова на воздухе.

Среди множества других «полезных дел» соединений олова - Защита древесины от гниения, уничтожение насекомых-вредителей и многое другое.

Еще хочется отметить, что многие литейщики, лишившись массовых заказов, переключались на производство оловянной миниатюры: в начале XIX века уже не только в Нюрнберге и Аугсбурге, но и в Берлине, Потсдаме, Лейпциге, Фрайбурге, Майсене, Дрездене и других германских городах стали возникать «фабрики оловянных фигур».

После появления германской империи рынок наводнили фигуры солдат и полководцев прусской армии всех эпох.

Сегодня в мире десятки фирм делают солдатиков из пластмассы, а вот оловянная миниатюра постепенно стала высоким искусством и предметом вожделения коллекционеров – массово ее теперь почти не производят.

В качестве примера образцы изделий из олова:


по предоставлению услуг по художественной ковке металла.

«Кошкин дом» - история вещей.

В 1910 году английский полярный исследователь капитан Роберт Скотт снарядил экспедицию, целью которой было добраться до Южного полюса, где в то время еще не ступала нога человека. Много трудных месяцев продвигались отважные путешественники по снежным пустыням антарктического материка, оставляя на своем пути небольшие склады с продуктами и керосином - запасы на обратную дорогу. В начале 1912 года экспедиция, наконец, достигла Южного полюса, но к своему великому разочарованию Скотт обнаружил там записку: выяснилось, что на месяц раньше здесь побывал норвежский путешественник Руаль Амундсен. Но главная беда поджидала Скотта на обратном пути. На первом же складе не оказалось керосина: жестянки, в которых он хранился, стояли пустые. Уставшие, продрогшие и голодные люди не могли согреться, им не на чем было приготовить пищу. С трудом добрались они до следующего склада, но и там их встретили пустые банки: весь керосин вытек. Будучи не в силах сопротивляться полярной стуже и страшным буранам, разразившимся в то время в Антарктиде, Роберт Скотт и его друзья вскоре погибли.

В чем же крылась причина таинственного исчезновения керосина? Почему тщательно продуманная экспедиция окончилась так трагически? Какую ошибку допустил капитан Скотт?

Причина оказалась простой. Жестяные банки с керосином были запаяны оловом. Должно быть, путешественники не знали, что на морозе олово "заболевает": блестящий белый металл сначала превращается в тускло-серый, а затем рассыпается в порошок. Это явление, называемое "оловянной чумой", и сыграло роковую роль в судьбе экспедиции.

А ведь подверженность олова "заболеванию" на холоде была известна задолго до описанных событий. Еще в средние века обладатели оловянной посуды замечали, что на морозе она покрывается "язвами", которые постепенно разрастаются, и в конце концов посуда превращается в порошок. Причем стоило "простудившейся" оловянной тарелке прикоснуться к "здоровой", как та вскоре тоже начинала покрываться серыми пятнами и рассыпалась.

В конце прошлого века из Голландии в Россию был отправлен железнодорожный состав, груженный брусками олова. Когда в Москве вагоны открыли, в них обнаружили серый ни на что не пригодный порошок - русская зима сыграла с получателями олова злую шутку.

Приблизительно в эти же годы в Сибирь направилась хорошо снаряженная экспедиция. Казалось, все было предусмотрено, чтобы сибирские морозы не помешали ее успешной работе. Но одну оплошность путешественники все же допустили: они взяли с собой оловянную посуду, которая вскоре вышла из строя. Пришлось вырезать ложки и миски из дерева. Лишь тогда экспедиция смогла продолжить свой путь.

В начале XX века в Петербурге на складе военного оборудования произошла скандальная история: во время ревизии к ужасу интенданта выяснилось, что оловянные пуговицы для солдатских мундиров исчезли, а ящики, в которых они хранились, доверху заполнены серым порошком. И хотя на складе был лютый холод, горе-интенданту стало жарко. Еще бы: его, конечно, заподозрят в краже, а это ничего, кроме каторжных работ, не сулит. Спасло бедолагу заключение химической лаборатории, куда ревизоры направили содержимое ящиков: "Присланное вами для анализа вещество, несомненно, олово. Очевидно, в данном случае имело место явление, известное в химии под названием "оловянная чума"".

Какие же процессы лежат в основе этих превращений олова? В средние века невежественные церковники считали, что "оловянная чума" вызывается наговорами ведьмы, и поэтому многие ни в чем не повинные женщины были сожжены на "очистительных" кострах. С развитием науки нелепость таких утверждений становилась очевидной, но найти истинную причину "оловянной чумы" ученые еще долго не могли.

Лишь после того, как на помощь металловедам пришел рентгеновский анализ, позволивший заглянуть внутрь металлов и определить их кристаллическое строение, удалось полностью реабилитировать "ведьм" и дать подлинно научное объяснение этому загадочному явлению. Оказалось, что олово (как, впрочем, и другие металлы) может иметь различные кристаллические формы. При комнатной и более высокой температуре самой устойчивой модификацией (разновидностью) является белое олово - вязкий, пластичный металл. При температуре ниже 13°С кристаллическая решетка олова перестраивается так, чтобы атомы расположились в пространстве менее плотно. Образующаяся при этом новая модификация - серое олово - уже теряет свойства металла и становится полупроводником. Внутренние напряжения, которые возникают в местах контакта разных кристаллических решеток, приводят к тому, что материал трескается и рассыпается в порошок. Одна модификация переходит в другую тем скорее, чем ниже окружающая температура. При -33°С скорость этого превращения достигает максимума. Вот почему сильные морозы так быстро и безжалостно расправляются с оловянными изделиями.


Но ведь олово широко применяют для пайки радиоэлектронной (особенно полупроводниковой) аппаратуры, для полуды проводов и различных деталей, вместе с которыми оно попадает и в Арктику, и в Антарктиду, и в другие холодные места нашей планеты. Значит, все эти приборы, в которых использовано олово, быстро выходят из строя? Разумеется, нет. Ученые научились делать олову "прививки", обеспечивающие металлу иммунитет против "оловянной чумы". Подходящей для этой цели "вакциной" служит, например, висмут. Атомы висмута, поставляя дополнительные электроны в решетку олова, стабилизируют его состояние, что полностью исключает возможность "заболевания".

Чистое олово обладает любопытным свойством: при изгибе прутков или пластинок этого металла слышен легкий треск - "оловянный крик". Этот характерный знак возникает вследствие взаимного трения кристаллов олова при их смещении и деформации. Сплавы же олова с другими металлами в подобных ситуациях, как говорится, держат язык за зубами.

Почти половина всего добываемого в мире олова расходуется сегодня на производство белой жести, используемой главным образом для изготовления консервных банок. Здесь в полной мере проявляются ценные качества металла: его химическая устойчивость по отношению к кислороду, воде, органическим кислотам и, вместе с тем, полная безвредность его солей для человеческого организма. Олово прекрасно справляется с этой ролью и практически не знает конкурентов. Не случайно его называют "металлом консервной банки". Благодаря тончайшему оловянному слою, покрывающему жесть, люди имеют возможность подолгу хранить миллионы тонн мяса, рыбы, фруктов, овощей, молочных продуктов.

Прежде для нанесения оловянного покрытия применяли горячий способ, при котором очищенный и обезжиренный лист железа погружали в расплавленное олово. Если же надо было полудить одну сторону листа, ее очищали, нагревали и натирали оловом. Сейчас этот способ уже сдан в архив, а на смену ему пришло лужение в гальванических ваннах.

Истории техники известен пример промышленного шпионажа, связанный с производством белой жести. Во второй половине XVII века Англия, располагавшая и железом, и оловом, тем не менее вынуждена была покупать белую жесть, поскольку английские железодельцы не знали секрета ее изготовления. К тому времени металлурги Саксонского княжества уже более ста лет умели лудить тонкие железные листы и их продукция шла, во многие страны. Раскрыть тайну немецких мастеров было поручено в 1665 году некоему Эндрю Яррантону. Спустя несколько лет он так описывал цели своей "творческой командировки" в вышедшем в свет трактате "Способы укрепления Англии на море и на суше": "Мне предоставили достаточную сумму денег, чтобы покрыть расходы на путешествие туда, где делают листы белой жести. Оттуда я должен был привезти искусство ее изготовления". Визит в Саксонию оказался успешным, и вскоре английские промышленники уже могли похвастать отличной белой жестью собственного производства.

Но перенесемся вновь на три столетия вперед и мысленно представим себе гору из сотен миллиардов консервных банок, ежегодно выпускаемых в наше время во всех странах мира. Рядом с этой сооруженной фантазией консервной горой гигант Эверест, должно быть, выглядел бы не более чем скромный холмик. Рано или поздно пустая жестяная банка попадает на мусорную свалку, однако олову (а в каждой банке его примерно полграмма) не грозит быть здесь навеки погребенным: человек заботится о том, чтобы извлечь ценный металл и вновь использовать его для своих нужд.

Собранные жестянки направляются в специальную установку, где под действием щелочей и электрического тока железо вынуждено снимать оловянную рубашку. Из этой своеобразной "бани" выходят очищенная жесть и светлые оловянные слитки - они готовы снова превратиться в консервные банки.

Характерная особенность олова - его легкоплавкость. Помните, как в сказке Ганса Христиана Андерсена мгновенно растаял в огне стойкий оловянный солдатик, когда по злой воле он оказался в печке?

Благодаря сравнительно низкой температуре плавления этот металл снискал репутацию основного компонента припоев и легкоплавких сплавов. Интересно отметить, что сплав олова (16%) с висмутом (52%) и свинцом (32%) может расплавиться даже в кипятке: температура плавления этого сплава всего 95°С, в то время как его составляющие плавятся при значительно более высокой температуре: олово - при 232°С, висмут - при 271 °С, а свинец - при 327°С. Еще более охотно переходят в жидкое состояние сплавы, в которых олово служит добавкой к галлию и индию: известен, например, сплав, плавящийся уже при 3°С. Сплавы такого типа применяют в электротехнике как предохранители.

Хорошие литейные свойства, ковкость, красивый серебристо-белый цвет открыли перед оловом двери декоративно-прикладного искусства. Еще в Древней Греции и Древнем Египте из него выполняли украшения, напаянные на другие металлы. Гомер рассказывает в "Илиаде", как древнегреческий бог огня и кузнечного ремесла Гефест, выковав для героя Ахилла щит, нанес на него рисунок из олова. В более позднее время, примерно в XIII веке, в Европе появились оловянные блюда, чаши, кубки, церковная утварь и другие изделия с рельефными изображениями.

Олово - один из немногих материалов, используемых для изготовления органных трубок: считается, что этот металл придает звуку силу и чистоту. Со звуком связана и другая строка из биографии олова: в 1877 году знаменитый американский изобретатель Томас

Алва Эдисон с помощью созданного им фонографа впервые записал на оловянной фольге, покрытой слоем воска, а затем воспроизвел слова, вошедшие в историю звукозаписи: "У маленькой Мери был маленький ягненок".

С давних пор олово - важная составляющая различных бронз, типографских сплавов, баббитов (такое название получили изобретенные еще в 1839 году американцем Баббитом подшипниковые сплавы, способные стойко сопротивляться истиранию).

В технике широко применяются и многочисленные химические соединения олова. Они служат протравой при крашении хлопка и шелка, придают фарфору и стеклу красные оттенки, выступают в роли золотистой краски, при необходимости создают плотные дымовые завесы. Органические соединения этого элемента делают ткани водоотталкивающими, предотвращают гниение древесины, уничтожают насекомых-вредителей. Но, пожалуй, из всех соединений олова наибольшую известность в технике приобрел его станнид, который переходит в сверхпроводящее состояние при сравнительно высокой температуре: если большинство металлов, сплавов, соединений теряет всякое сопротивление электрическому току лишь вблизи абсолютного нуля, то станнид ниобия беспрепятственно пропускает ток уже при 18 К (или -255°С).

Начало знакомства человека с оловом теряется в глубине веков. Поначалу олово применяли лишь в союзе с медью: сплав этих металлов, называемый бронзой, был известен задолго до начала нашей эры. Бронзовые орудия были значительно тверже и прочнее медных. Видимо, этим и объясняется латинское название олова "станнум" - от санскритского слова "ста" - твердый, стойкий. Само же олово в чистом виде - мягкий металл, совсем не оправдывающий свое название. Время узаконило этот исторический парадокс, и металлурги сегодня легко обрабатывают податливое олово, не подозревая, что имеют дело с "твердым" материалом.

Изделия из бронзы были найдены при раскопках захоронений, сделанных почти шесть тысячелетий назад. Плиний Старший, говоря о зеркалах, утверждал, что "наилучшие из известных нашим праотцам были сделаны в Брундизие из смеси меди и олова".

Установить точно период, когда человеческое общество стало использовать олово в чистом виде, довольно трудно. В одной из египетских могил, относящейся к эпохе XVIII династии (середина первого тысячелетия до н.э.), найдены кольцо и бутылка из олова, которые и считаются наиболее ранними оловянными изделиями. В трудах греческого историка Геродота (V век до н.э.) мы находим упоминание об оловянных покрытиях, предохраняющих железо от ржавчины.

В одной из древних крепостей перуанских индейцев инков ученые обнаружили чистое олово, предназначенное, по-видимому, для получения бронзы: обитатели этой крепости славились как отличные металлурги и искусные мастера по изготовлению бронзовых изделий. Должно быть, инки не использовали олово в чистом виде, так как в крепости не удалось найти ни одного оловянного изделия.

Испанский конкистадор Эрнан Кортес, в начале XVI века завоевавший Мексику, писал: "Несколько небольших кусочков олова были найдены у туземцев провинции Такско в виде очень тонких монет; продолжая мои поиски, я обнаружил, что в этой провинции, а также во многих других, оно использовалось в качестве денег..."

В середине 20-х годов в Англии проводились раскопки у старинного замка, который был построен в III веке до н.э. Археологам удалось найти плавильные ямы, а в них - шлак, содержащий олово. Это означало, что здесь более двух тысяч лет назад была развита оловянная промышленность. Кстати, и Юлий Цезарь в своей книге "Комментарий по поводу Галльской войны" упоминает о производстве олова в некоторых районах Британии.

В 1971 году состоялась посмертная реабилитация 94 английских чеканщиков монет, которые были осуждены... 847 лет назад. Еще в 1124 году король Генрих I обвинил рабочих своего монетного двора в мошенничестве: кто-то донес ему, что при чеканке серебряных монет в металл добавляют слишком много олова. Королевский суд был скор, и суровый приговор - отрубить преступникам правую руку - придворные палачи тут же привели в исполнение. И вот спустя восемь с половиной столетий один из оксфордских ученых, подвергший злополучные монеты тщательному анализу при помощи рентгеновских лучей, пришел к твердому выводу: "Монеты содержат очень мало олова. Король был неправ".

С незапамятных пор основным источником олова служил минерал касситерит, или оловянный камень. Еще задолго до нашей эры финикийцы снаряжали свои корабли к далеким Касситеридам - так назывались богатые оловянной рудой небольшие острова в Северной Атлантике, вблизи Британских островов. В более поздние времена центр мировой добычи олова переместился на Малайский архипелаг. С этим металлом тесно связана вся история Малайзии, земли которой издавна славились своими оловянными богатствами. Современная столица этого государства Куала-Лумпур (что в переводе означает "устье мутной реки") - сравнительно молодой красивый город, возникший во второй половине прошлого века на месте, где китайские старатели нашли крупное месторождение оловянной руды. Каждый, кто побывал в Куала-Лумпуре, увозит отсюда сувенир из олова - вазочку, пепельницу, подсвечник, сделанные искусными руками малайзийских мастеров.

Но иногда из этой страны вывозят и совсем другие "сувениры", о чем свидетельствует случай, произошедший на границе Малайзии и Сингапура. Эти страны связаны дамбой, проходящей через пролив Джохор. Проложенное по дамбе шоссе всегда заполнено автомобилями. В один из дней к контрольно-пропускному пункту на малайзийской стороне подъехал автопоезд, груженный огромными бетонными столбами. Столбы как столбы, однако что-то показалось таможенникам подозрительным, и они решили "прощупать" груз: приказали шоферу отъехать в сторону, при помощи автокрана сняли один из столбов с машины и тяжелой кувалдой раскололи его на части. И что же? Профессиональное чутье не подвело работников таможни: в каждой болванке находился металлический контейнер с оловянным концентратом - желанным сырьем для владельцев оловоплавильного завода в Сингапуре. Всего в бетонной "упаковке" было 127 тонн богатого концентрата. В другой раз в огромной автоцистерне, которую называют здесь "сухопутным танкером", вместо пальмового масла, как утверждал водитель, оказалось восемь с половиной тонн все того же контрабандного концентрата.

Значительные запасы оловянных руд есть и в Советском Союзе - на Дальнем Востоке, в Забайкалье, Казахстане. В музее комбината "Дальолово" в Уссурийске хранится редкий по величине сросток оловянного камня: он весит чуть ли не полцентнера.

Несколько лет назад в нашей стране был создан портативный переносной прибор - гамма-резонансный оловоискатель. Чтобы определить содержание олова в руде с точностью до сотых долей процента, геологу, вооруженному таким прибором, потребуется всего несколько минут. Ценность прибора заключается еще и в том, что он реагирует только на касситерит и не обращает внимания на другой минерал, содержащий олово, - станнин, который в качестве оловянного сырья значительно меньше интересует промышленность.

Крупное открытие было сделано советскими учеными, установившими, что своеобразным индикатором присутствия олова в том или ином геологическом районе может служить фтор. Многочисленные анализы и эксперименты позволили как бы воспроизвести картину рудообразования, происходившего многие миллионы лет назад. В те далекие времена олово, как выяснилось, находилось в виде комплексного соединения, в котором непременно присутствовал фтор. Постепенно олово и его соединения выпадали в осадок, образуя месторождения, а его бывший компаньон фтор оставался вблизи залежей оловянных руд на вечное поселение. Это открытие позволяет определять возможные районы залегания олова и даже прогнозировать его запасы.

Геологи ищут касситерит не только на суше, но и под водой. Поиски уже увенчались успехом: россыпи оловянного камня удалось обнаружить на дне Японского моря в одной из бухт. Богаты им и прибрежные воды морей Северного Ледовитого океана - Ванькина губа, акватория мыса Святой Нос и другие районы. Большую помощь морским рудознатцам оказывают аквалангисты. Да и сами геологи к своей обычной экипировке добавили акваланг, без которого в шельфе Святого Носа не поковыряешь.

Добытый касситерит поступает на металлургические предприятия, где превращается в олово. В первые месяцы Великой Отечественной войны из Подмосковья в Новосибирск был эвакуирован оловокомбинат, который дал первую плавку уже в начале 1942 года. Тогда комбинат выпускал лишь черное 85 %-ное олово, но и такой металл в то трудное время был очень нужен стране. Сейчас сибирское олово высокой чистоты (от первых букв этих слов образована марка металла - ОВЧ), предназначенное для полупроводниковой промышленности, зарегистрировано на Лондонской бирже в качестве эталона, не превзойденного по качеству ни одной фирмой мира. Металл марки ОВЧ-000 содержит 99,9995% олова, а металл ОВЧ-0000 еще чище: в нем всего 0,0001 % примесей.

Дефицитность олова заставляет ученых и инженеров постоянно искать ему заменители. В то же время этот металл находит все новые области применения. Американская фирма "Форд мотор" построила завод, на котором применен любопытный метод производства непрерывной широкой ленты для оконного стекла. Жидкое стекло из печи попадает в огромную, длиной в несколько десятков метров, ванну и здесь растекается по слою расплавленного олова. Поскольку металлический расплав имеет идеально гладкую поверхность, стекло, остывая и затвердевая на нем, тоже становится совершенно гладким. Такое стекло не нуждается в шлифовке и полировке, что существенно сокращает производственные расходы.

Оригинальное стекло, которое служит своеобразной ловушкой для солнца, создали советские ученые. Выглядит оно совсем как обычное, но отличается от него тем, что покрыто тончайшей пленкой оксида олова. Эта невидимая для глаза пленка беспрепятственно пропускает солнечный свет, но не позволяет тепловым лучам переходить границу в обратном направлении. Такое стекло - находка для овощеводов: в нагретой солнцем за день теплице ночью сохранится почти та же температура, в то время как через обычное стекло тепловые джоули один за другим к утру без труда проскользнули бы наружу. В новых теплицах растения чувствуют себя уютно, даже если на улице стоит десятиградусный мороз. Стекло с оловянным покрытием пригодится для различных солнечных нагревателей и других устройств, где энергия дневного светила превращается в тепло.

Биография олова будет неполной, если не рассказать об одной почти детективной истории со счастливым концом, в которой этот металл сыграл далеко не последнюю роль.

Вторая мировая война подходила к концу. Понимая, что ближайшее будущее не сулит ничего приятного, правители "независимого" Словацкого государства, сфабрикованного Гитлером в 1939 году на территории Чехословакии, задумали кое-что припрятать на черный день. Проще всего, как им казалось, было запустить руки в золотой фонд, созданный трудом словацкого народа. Однако группа патриотов, занимавших ответственные банковские посты, решила не допустить этого. Часть золота была тайно переведена в швейцарский банк и блокирована там до конца войны в пользу Чехословацкой Республики. Кое-что удалось переправить партизанам. Но часть золота все же осталась еще в сейфах Братиславского банка.

Один из главарей марионеточного правительства по секрету сообщил немецкому послу в Братиславе о ценностях, хранящихся в бронированных подвалах, и попросил выделить солдат для проведения "банковской операции" по изъятию золота. Пришлось, правда, брать третьим компаньоном еще и генерала войск СС, но зато в успехе грабежа можно было не сомневаться.

Эсэсовцы окружили здание банка, и офицер, угрожая служащим расстрелом, приказал сдать ценности. Через несколько минут ящики с золотом перекочевали из сейфов в эсэсовские грузовики. Дельцы радостно потирали руки, не подозревая, что в ящиках хранятся слитки "золота", предусмотрительно изготовленные директором Монетного двора из... олова. А служащие банка еще раз проверили замки на тайниках, где хранилось настоящее золото, и стали с нетерпением дожидаться освобождения своей страны от гитлеровских войск.