Свойства на логаритмите и примери за техните решения. Изчерпателно ръководство (2019)

Вашата поверителност е важна за нас. Поради тази причина разработихме Политика за поверителност, която описва как използваме и съхраняваме вашата информация. Моля, прочетете нашата политика за поверителност и ни уведомете, ако имате въпроси.

Събиране и използване на лична информация

Личната информация се отнася до данни, които могат да бъдат използвани за идентифициране или контакт с конкретно лице.

Може да бъдете помолени да предоставите вашата лична информация по всяко време, когато се свържете с нас.

По-долу са дадени някои примери за видовете лична информация, която можем да събираме и как можем да използваме тази информация.

Каква лична информация събираме:

  • Когато подадете заявление на сайта, ние може да съберем различна информация, включително вашето име, телефонен номер, имейл адрес и др.

Как използваме вашата лична информация:

  • Събрани от нас лична информацияни позволява да се свързваме с вас и да ви информираме за уникални оферти, промоции и други събития и предстоящи събития.
  • От време на време може да използваме вашата лична информация, за да ви изпращаме важни известия и съобщения.
  • Може също така да използваме лична информация за вътрешни цели като одит, анализ на данни и различни изследванияза да подобрим услугите, които предоставяме, и да ви предоставим препоръки относно нашите услуги.
  • Ако участвате в томбола, състезание или подобен стимул, ние може да използваме предоставената от вас информация за администриране на такива програми.

Разкриване на трети страни

Ние не разкриваме информация, получена от вас, на трети страни.

Изключения:

  • При необходимост - в съответствие със закона, съдебен ред, в съдебни производства и/или въз основа на публични искания или искания от правителствени агенциина територията на Руската федерация - разкрийте вашата лична информация. Може също така да разкрием информация за вас, ако преценим, че такова разкриване е необходимо или подходящо за целите на сигурността, правоприлагането или други цели от обществен интерес.
  • В случай на реорганизация, сливане или продажба, можем да прехвърлим личната информация, която събираме, на съответния приемник на трета страна.

Защита на личната информация

Ние вземаме предпазни мерки – включително административни, технически и физически – за да защитим вашата лична информация от загуба, кражба и злоупотреба, както и от неоторизиран достъп, разкриване, промяна и унищожаване.

Поддържане на вашата поверителност на фирмено ниво

За да гарантираме, че вашата лична информация е защитена, ние съобщаваме практиките за поверителност и сигурност на нашите служители и стриктно прилагаме практиките за поверителност.


Фокусът на тази статия е логаритъм. Тук ще дадем дефиницията на логаритъм, ще покажем приетата нотация, ще дадем примери за логаритми и ще говорим за естествени и десетични логаритми. След това помислете за основното логаритмично тъждество.

Навигация в страницата.

Дефиниция на логаритъм

Концепцията за логаритъм възниква при решаване на проблем в определен смисъл обратен, когато трябва да намерите експонента от известна стойност на степента и известна основа.

Но достатъчно преамбюл, време е да отговорим на въпроса "какво е логаритъм"? Нека дадем подходящо определение.

Определение.

Логаритъм от b при основа a, където a>0 , a≠1 и b>0 е степента, до която трябва да повишите числото a, за да получите b като резултат.

На този етап отбелязваме, че изречената дума „логаритъм“ трябва незабавно да предизвика два произтичащи въпроса: „какво число“ и „на каква основа“. С други думи, просто няма логаритъм, а има само логаритъм от число в някаква основа.

Веднага ще ви представим логаритмична нотация: логаритъма на числото b при основата a обикновено се означава като log a b . Логаритъмът на числото b при основа e и логаритъмът при основа 10 имат свои собствени специални обозначения съответно lnb и lgb, тоест те пишат не log e b, а lnb, и не log 10 b, а lgb.

Сега можете да донесете: .
И записите нямат смисъл, тъй като в първия от тях под знака на логаритъма е отрицателно число, във втория - отрицателно число в основата, а в третия - едновременно отрицателно число под знака на логаритъма и единица в основата.

Сега нека поговорим за правила за четене на логаритми. Входният дневник a b се чете като "логаритъм от b по основа a". Например log 2 3 е логаритъм от три по основа 2 и е логаритъм от две цели числа две основни трети от корен квадратен от пет. Логаритъмът при основа e се нарича натурален логаритъм, а обозначението lnb се чете като "натурален логаритъм от b". Например ln7 е натурален логаритъм от седем и ние ще го четем като натурален логаритъм от пи. Логаритъмът при основа 10 също има специално име - десетичен логаритъм, а нотацията lgb се чете като "десетичен логаритъм b". Например lg1 е десетичният логаритъм от едно, а lg2,75 е десетичният логаритъм от две цяло седемдесет и пет стотни.

Струва си да се спрем отделно на условията a>0, a≠1 и b>0, при които е дадена дефиницията на логаритъма. Нека обясним откъде идват тези ограничения. За да направим това, ще ни помогне равенство на формата, наречено , което пряко следва от дефиницията на логаритъма, дадена по-горе.

Нека започнем с a≠1. Тъй като едно е равно на едно на произволна степен, равенството може да е вярно само за b=1, но log 1 1 може да бъде всяко реално число. За да се избегне тази неяснота, се приема a≠1.

Нека обосновем целесъобразността на условието a>0 . При a=0, по дефиницията на логаритъма, ще имаме равенство , което е възможно само при b=0 . Но тогава log 0 0 може да бъде всяко ненулево реално число, тъй като нула на всяка ненулева степен е нула. Тази неяснота може да бъде избегната чрез условието a≠0. И за а<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

И накрая, условието b>0 следва от неравенството a>0 , тъй като , и стойността на степента с положителна основа a винаги е положителна.

В заключение на този параграф казваме, че изразената дефиниция на логаритъма ви позволява незабавно да посочите стойността на логаритъма, когато числото под знака на логаритъма е определена степен на база. Наистина, дефиницията на логаритъма ни позволява да твърдим, че ако b=a p , тогава логаритъма на числото b при основа a е равен на p . Тоест равенството log a a p =p е вярно. Например знаем, че 2 3 =8 , тогава log 2 8=3 . Ще говорим повече за това в статията.

Логаритмите, като всяко число, могат да се събират, изваждат и преобразуват по всеки възможен начин. Но тъй като логаритмите не са точно обикновени числа, тук има правила, които се наричат основни свойства.

Тези правила трябва да се знаят – без тях не може да се реши нито една сериозна логаритмична задача. Освен това има много малко от тях - всичко може да се научи за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с една и съща основа: log а хи дневник а г. След това те могат да се събират и изваждат и:

  1. дневник а х+дневник а г= дневник а (х · г);
  2. дневник а х−дневник а г= дневник а (х : г).

И така, сумата от логаритмите е равна на логаритъма от произведението, а разликата е логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е - същите основания. Ако базите са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичния израз, дори когато не се вземат предвид отделните му части (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

log 6 4 + log 6 9.

Тъй като основите на логаритмите са еднакви, използваме формулата за сумата:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Задача. Намерете стойността на израза: log 2 48 − log 2 3.

Базите са еднакви, използваме формулата за разликата:
log 2 48 - log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Задача. Намерете стойността на израза: log 3 135 − log 3 5.

Отново, основите са същите, така че имаме:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от "лоши" логаритми, които не се разглеждат отделно. Но след трансформациите се получават съвсем нормални числа. Въз основа на този факт мн тестови работи. Да, контрол - подобни изрази с цялата сериозност (понякога - практически без промени) се предлагат на изпита.

Премахване на експонентата от логаритъма

Сега нека усложним малко задачата. Ами ако има степен в основата или аргумента на логаритъма? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Лесно е да се види това последното правилоследва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ логаритъма: а > 0, а ≠ 1, х> 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно, т.е. можете да въведете числата преди знака на логаритъма в самия логаритъм. Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log 7 49 6 .

Нека се отървем от степента в аргумента според първата формула:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Задача. Намерете стойността на израза:

[Надпис на фигура]

Забележете, че знаменателят е логаритъм, чиято основа и аргумент са точни степени: 16 = 2 4 ; 49 = 72. Ние имаме:

[Надпис на фигура]

Мисля, че последният пример има нужда от пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Те представиха основата и аргумента на логаритъма, стоящ там под формата на градуси и извадиха индикаторите - получиха „триетажна“ дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят имат едно и също число: log 2 7. Тъй като log 2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката, четворката може да се прехвърли в числителя, което беше направено. Резултатът е отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако основите са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова база идват на помощ. Ние ги формулираме под формата на теорема:

Нека логаритъма се регистрира а х. След това за произволен номер ° Стакова, че ° С> 0 и ° С≠ 1, равенството е вярно:

[Надпис на фигура]

По-специално, ако поставим ° С = х, получаваме:

[Надпис на фигура]

От втората формула следва, че е възможно да се разменят основата и аргументът на логаритъма, но в този случай целият израз се „обръща“, т.е. логаритъма е в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само при решаване на логаритмични уравнения и неравенства.

Има обаче задачи, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека разгледаме няколко от тях:

Задача. Намерете стойността на израза: log 5 16 log 2 25.

Обърнете внимание, че аргументите на двата логаритма са точни показатели. Нека извадим индикаторите: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Сега нека обърнем втория логаритъм:

[Надпис на фигура]

Тъй като произведението не се променя от пермутация на множители, ние спокойно умножихме четири и две и след това изчислихме логаритмите.

Задача. Намерете стойността на израза: log 9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека го запишем и да се отървем от индикаторите:

[Надпис на фигура]

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

[Надпис на фигура]

Основно логаритмично тъждество

Често в процеса на решаване се изисква да се представи число като логаритъм на дадена основа. В този случай формулите ще ни помогнат:

В първия случай броят нстава изразител на аргумента. Брой нможе да бъде абсолютно всичко, защото това е просто стойността на логаритъма.

Втората формула всъщност е перифразирана дефиниция. Това се нарича: основно логаритмично тъждество.

Наистина, какво ще стане, ако броят bиздигнете до властта, така че bдо тази степен дава число а? Точно така: това е едно и също число а. Прочетете внимателно този параграф отново - много хора „висят“ върху него.

Подобно на новите формули за базово преобразуване, основната логаритмична идентичност понякога е единственото възможно решение.

Задача. Намерете стойността на израза:

[Надпис на фигура]

Обърнете внимание, че log 25 64 = log 5 8 - просто извади квадрата от основата и аргумента на логаритъма. Като се имат предвид правилата за умножение на степени с една и съща основа, получаваме:

[Надпис на фигура]

Ако някой не е наясно, това беше истинска задача от изпита :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които е трудно да наречем свойства - по-скоро това са следствия от дефиницията на логаритъма. Постоянно се намират в проблеми и учудващо създават проблеми дори на "напредналите" ученици.

  1. дневник а а= 1 е логаритмичната единица. Запомнете веднъж завинаги: логаритъма на произволна основа аот самата тази база е равно на едно.
  2. дневник а 1 = 0 е логаритмична нула. База аможе да бъде всичко, но ако аргументът е единица, логаритъма е нула! защото а 0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Днес ще говорим за логаритмични формулии направете демонстрация примери за решение.

Сами по себе си те предполагат модели на решение според основните свойства на логаритмите. Преди да приложим формулите за логаритъм към решението, ние ви припомняме първо всички свойства:

Сега, въз основа на тези формули (свойства), показваме примери за решаване на логаритми.

Примери за решаване на логаритми по формули.

Логаритъмположително число b при основа a (означено като log a b) е степента, до която a трябва да се повдигне, за да се получи b, с b > 0, a > 0 и 1.

Според определението log a b = x, което е еквивалентно на a x = b, така че log a a x = x.

Логаритми, примери:

log 2 8 = 3, защото 2 3 = 8

log 7 49 = 2 защото 7 2 = 49

log 5 1/5 = -1, защото 5 -1 = 1/5

Десетичен логаритъме обикновен логаритъм, чиято основа е 10. Означава се като lg.

log 10 100 = 2 защото 10 2 = 100

натурален логаритъм- също обичайният логаритъм логаритъм, но с основата e (e \u003d 2.71828 ... - ирационално число). Наричан като ln.

Желателно е да си припомним формулите или свойствата на логаритмите, защото те ще ни трябват по-късно при решаване на логаритми, логаритмични уравнения и неравенства. Нека да разгледаме всяка формула отново с примери.

  • Основно логаритмично тъждество
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Логаритъмът на произведението е равен на сбора от логаритмите
    log a (bc) = log a b + log a c

    log 3 8.1 + log 3 10 = log 3 (8.1*10) = log 3 81 = 4

  • Логаритъмът на частното е равен на разликата на логаритмите
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Свойства на степента на логаритмуемо число и основата на логаритъма

    Показателят на числото логаритъм log a b m = mlog a b

    Показател на основата на логаритъма log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ако m = n, получаваме log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Преход към нова основа
    log a b = log c b / log c a,

    ако c = b, получаваме log b b = 1

    тогава log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Както можете да видите, формулите за логаритъм не са толкова сложни, колкото изглеждат. Сега, след като разгледахме примери за решаване на логаритми, можем да преминем към логаритмични уравнения. Ще разгледаме примери за решаване на логаритмични уравнения по-подробно в статията: "". Не пропускайте!

Ако все още имате въпроси относно решението, напишете ги в коментарите към статията.

Забележка: реших да получа образование в друг клас в чужбина като опция.


Продължаваме да изучаваме логаритми. В тази статия ще говорим за изчисляване на логаритми, този процес се нарича логаритъм. Първо, ще се занимаваме с изчисляването на логаритми по дефиниция. След това помислете как се намират стойностите на логаритмите, като се използват техните свойства. След това ще се спрем на изчисляването на логаритмите чрез първоначално дадените стойности на други логаритми. И накрая, нека научим как да използваме таблици с логаритми. Цялата теория е снабдена с примери с подробни решения.

Навигация в страницата.

Изчисляване на логаритми по дефиниция

В най-простите случаи е възможно бързо и лесно изпълнение намиране на логаритъм по дефиниция. Нека да разгледаме по-подробно как протича този процес.

Същността му е да представи числото b във формата a c , откъдето по дефиницията на логаритъма числото c е стойността на логаритъма. Тоест по дефиниция намирането на логаритъм съответства на следната верига от равенства: log a b=log a a c =c .

И така, изчисляването на логаритъма по дефиниция се свежда до намирането на такова число c, че a c \u003d b, а самото число c е желаната стойност на логаритъма.

Като се има предвид информацията от предишните параграфи, когато числото под знака на логаритъма е дадено от някаква степен на основата на логаритъма, тогава можете веднага да посочите на какво е равен логаритъма - той е равен на експонентата. Да покажем примери.

Пример.

Намерете log 2 2 −3 и също изчислете натурален логаритъм от e 5,3.

Решение.

Дефиницията на логаритъма ни позволява веднага да кажем, че log 2 2 −3 = −3 . Наистина, числото под знака на логаритъма е равно на основа 2 на степен −3.

По подобен начин намираме втория логаритъм: lne 5,3 =5,3.

Отговор:

log 2 2 −3 = −3 и lne 5,3 =5,3 .

Ако числото b под знака на логаритъма не е дадено като степен на основата на логаритъма, тогава трябва внимателно да обмислите дали е възможно да излезете с представяне на числото b във формата a c . Често това представяне е съвсем очевидно, особено когато числото под знака на логаритъма е равно на основата на степен 1, или 2, или 3, ...

Пример.

Изчислете логаритмите log 5 25 и .

Решение.

Лесно се вижда, че 25=5 2 , това ви позволява да изчислите първия логаритъм: log 5 25=log 5 5 2 =2 .

Пристъпваме към изчисляването на втория логаритъм. Едно число може да бъде представено като степен на 7: (вижте ако е необходимо). Следователно, .

Нека пренапишем третия логаритъм в следната форма. Сега можете да видите това , откъдето заключаваме, че . Следователно, по дефиницията на логаритъма .

Накратко решението може да се напише по следния начин:

Отговор:

log 5 25=2 , и .

Когато достатъчно голямо естествено число е под знака на логаритъма, не пречи да го разложите на прости множители. Често помага да се представи такова число като някаква степен на основата на логаритъма и следователно да се изчисли този логаритъм по дефиниция.

Пример.

Намерете стойността на логаритъма.

Решение.

Някои свойства на логаритмите ви позволяват незабавно да посочите стойността на логаритмите. Тези свойства включват свойството на логаритъм от едно и свойството на логаритъм на число, равно на основата: log 1 1=log a a 0 =0 и log a a=log a a 1 =1 . Тоест, когато числото 1 или числото a е под знака на логаритъма, равен на основата на логаритъма, тогава в тези случаи логаритмите са съответно 0 и 1.

Пример.

Какви са логаритмите и lg10?

Решение.

Тъй като , следва от дефиницията на логаритъма .

Във втория пример числото 10 под знака на логаритъма съвпада с неговата основа, така че десетичният логаритъм от десет е равен на единица, тоест lg10=lg10 1 =1 .

Отговор:

И lg10=1 .

Имайте предвид, че изчисляването на логаритми по дефиниция (което обсъдихме в предишния параграф) предполага използването на равенството log a a p =p, което е едно от свойствата на логаритмите.

На практика, когато числото под знака на логаритъма и основата на логаритъма лесно се представят като степен на някакво число, е много удобно да се използва формулата , което съответства на едно от свойствата на логаритмите. Помислете за пример за намиране на логаритъм, илюстриращ използването на тази формула.

Пример.

Изчислете логаритъма на .

Решение.

Отговор:

.

Свойствата на логаритмите, които не са споменати по-горе, също се използват в изчислението, но ще говорим за това в следващите параграфи.

Намиране на логаритми по отношение на други известни логаритми

Информацията в този параграф продължава темата за използването на свойствата на логаритмите при тяхното изчисляване. Но тук основната разлика е, че свойствата на логаритмите се използват за изразяване на оригиналния логаритъм чрез друг логаритъм, чиято стойност е известна. Нека вземем пример за пояснение. Да кажем, че знаем, че log 2 3≈1,584963, тогава можем да намерим, например, log 2 6, като направим малка трансформация, използвайки свойствата на логаритъма: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

В горния пример за нас беше достатъчно да използваме свойството логаритъм на произведението. Много по-често обаче трябва да използвате по-широк арсенал от свойства на логаритми, за да изчислите оригиналния логаритъм по отношение на дадените.

Пример.

Изчислете логаритъма от 27 при основа 60, ако е известно, че log 60 2=a и log 60 5=b.

Решение.

Така че трябва да намерим log 60 27 . Лесно се вижда, че 27=3 3 и първоначалният логаритъм, поради свойството на логаритъма на степента, може да бъде пренаписан като 3·log 60 3 .

Сега нека видим как log 60 3 може да бъде изразено чрез известни логаритми. Свойството на логаритъм на число, равно на основата, ви позволява да напишете логаритъм на равенство 60 60=1 . От друга страна, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2 log 60 2+log 60 3+log 60 5 . По този начин, 2 log 60 2+log 60 3+log 60 5=1. Следователно, log 60 3=1−2 log 60 2−log 60 5=1−2 a−b.

Накрая изчисляваме първоначалния логаритъм: log 60 27=3 log 60 3= 3 (1−2 a−b)=3−6 a−3 b.

Отговор:

log 60 27=3 (1−2 a−b)=3−6 a−3 b.

Отделно си струва да споменем значението на формулата за преход към нова основа на логаритъма на формата . Тя ви позволява да преминете от логаритми с произволна основа към логаритми с конкретна основа, чиито стойности са известни или е възможно да ги намерите. Обикновено от оригиналния логаритъм, според формулата за преход, те преминават към логаритми в една от базите 2, e или 10, тъй като има таблици с логаритми за тези бази, които им позволяват да бъдат изчислени с определена степен на точност. В следващия раздел ще покажем как се прави това.

Таблици на логаритми, тяхното използване

За приблизително изчисляване на стойностите на логаритмите можете да използвате логаритмични таблици. Най-често се използват таблицата с логаритъм с основа 2, таблицата с натурален логаритъм и таблицата с десетичен логаритъм. Когато работите в десетичната бройна система, е удобно да използвате таблица с логаритми по основа десет. С негова помощ ще се научим да намираме стойностите на логаритмите.










Представената таблица позволява с точност до една десет хилядна да се намерят стойностите на десетичните логаритми на числата от 1000 до 9999 (с три знака след десетичната запетая). Принципът за намиране на стойността на логаритъма с помощта на таблицата с десетични логаритми ще бъде анализиран в конкретен пример- толкова по-ясно. Нека намерим lg1,256.

В лявата колона на таблицата с десетични логаритми намираме първите две цифри на числото 1,256, тоест намираме 1,2 (това число е оградено в синьо за яснота). Третата цифра на числото 1.256 (номер 5) се намира в първото или последен редвляво от двойната линия (това число е оградено в червено). Четвъртата цифра от оригиналното число 1.256 (номер 6) се намира в първия или последния ред вдясно от двойната линия (това число е оградено в зелено). Сега намираме числата в клетките на таблицата с логаритми в пресечната точка на маркирания ред и маркираните колони (тези числа са маркирани оранжево). Сумата от маркираните числа дава желаната стойност на десетичния логаритъм до четвъртия знак след десетичната запетая, т.е. log1.236≈0.0969+0.0021=0.0990.

Възможно ли е, като се използва горната таблица, да се намерят стойностите на десетичните логаритми на числа, които имат повече от три цифри след десетичната запетая и също така да надхвърлят границите от 1 до 9,999? Да, можеш. Нека покажем как става това с пример.

Нека изчислим lg102,76332. Първо трябва да пишете номер в стандартна форма: 102,76332=1,0276332 10 2 . След това мантисата трябва да се закръгли до третия знак след десетичната запетая, имаме 1,0276332 10 2 ≈1,028 10 2, докато първоначалният десетичен логаритъм е приблизително равен на логаритъма на полученото число, т.е. вземаме lg102,76332≈lg1,028·10 2 . Сега приложете свойствата на логаритъма: lg1.028 10 2 =lg1.028+lg10 2 =lg1.028+2. Накрая намираме стойността на логаритъма lg1.028 според таблицата на десетичните логаритми lg1.028≈0.0086+0.0034=0.012. В резултат на това целият процес на изчисляване на логаритъма изглежда така: lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1,028+lg10 2 =lg1,028+2≈0,012+2=2,012.

В заключение си струва да се отбележи, че с помощта на таблицата с десетични логаритми можете да изчислите приблизителната стойност на всеки логаритъм. За да направите това, достатъчно е да използвате формулата за преход, за да отидете до десетични логаритми, да намерите техните стойности в таблицата и да извършите останалите изчисления.

Например, нека изчислим log 2 3 . Според формулата за прехода към нова основа на логаритъма имаме . От таблицата с десетични логаритми намираме lg3≈0,4771 и lg2≈0,3010. По този начин, .

Библиография.

  • Колмогоров A.N., Абрамов A.M., Дудницин Ю.П. и др.. Алгебра и началото на анализа: Учебник за 10-11 клас на общообразователните институции.
  • Гусев В.А., Мордкович А.Г. Математика (наръчник за кандидати за технически училища).