Схема синтеза тиреоидных гормонов. Тиреоидные гормоны

Фолликулярные клетки щитовидной железы синтезируют крупный белок-предшественник гормонов (тиреоглобулин), извлекают из крови и накапливают йодид и экспрессируют на своей поверхности рецепторы, которые связывают тиреотропный гормон (тиреотропин, ТТГ), стимулирующий рост и биосинтетические функции тиреоцитов.

Синтез и секреция тиреоидных гормонов

Синтез Т4 и Т3 в щитовидной железе проходит шесть основных этапов:

  1. активный транспорт I — через базальную мембрану в клетку (захват);
  2. окисление йодида и йодирование остатков тирозина в молекуле тиреоглобулина (органификация);
  3. соединение двух остатков йодированного тирозина с образованием йодтиронинов Т3 и Т4 (конденсация);
  4. протеолиз тиреоглобулина с выходом свободных йодтиронинов и йодтирозинов в кровь;
  5. дейодирование йодтиронинов в тиреоцитах с повторным использованием свободного йодида;
  6. внутриклеточное 5"-дейодирование Т4 с образованием Т3.

Для синтеза тиреоидных гормонов необходимо присутствие функционально активных молекул НЙС, тиреоглобулина и тиреоидной пероксидазы (ТПО).

Тиреоглобулин

Тиреоглобулин представляет собой крупный гликопротеин, состоящий из двух субъединиц, каждая из которых насчитывает 5496 аминокислотных остатков. В молекуле тиреоглобулина содержится примерно 140 остатков тирозина, но только четыре из них расположены таким образом, что могут превращаться в гормоны. Содержание йода в тиреоглобулине колеблется от 0,1 до 1% по весу. В тиреоглобулине, содержащем 0,5% йода, присутствуют три молекулы Т4 и одна молекула Т3.

Ген тиреоглобулина, расположенный на длинном плече хромосомы 8, состоит примерно из 8500 нуклеотидов и кодирует мономерный белок-предшественник, в который входит и сигнальный пептид из 19 аминокислот. Экспрессия гена тиреоглобулина регулируется ТТГ. После трансляции тиреоглобулиновой мРНК в шероховатом эндоплазматическом ретикулуме (ШЭР) образовавшийся белок поступает в аппарат Гольджи, где подвергается гликозилированию, и его димеры упаковываются в экзоцитозные пузырьки. Затем эти пузырьки сливаются с апикальной мембраной клетки, и тиреоглобулин выделяется в просвет фолликула. На границе апикальной мембраны и коллоида происходит йодирование остатков тирозина в молекуле тиреоглобулина.

Тиреоидная пероксидаза

ТПО, связанный с мембраной гликопротеин (молекулярная масса 102 кДа), содержащий группу гемма, катализирует как окисление йодида, так и ковалентное связывание йода с тирозильными остатками тиреоглобулина. ТТГ усиливает экспрессию гена ТПО. Синтезированная ТПО проходит по цистернам ШЭР, включается в экзоцитозные пузырьки (в аппарате Гольджи) и переносится к апикальной мембране клетки. Здесь, на границе с коллоидом, ТПО катализирует йодирование тирозильных остатков тиреоглобулина и их конденсацию.

Транспорт йодида

Транспорт йодида (Г) через базальную мембрану тиреоцитов осуществляется НЙС. Связанный с мембраной НЙС, снабжаемый энергией ионных градиентов (создаваемых Na+, К+ — АТФазой), обеспечивает концентрацию свободного йодида в щитовидной железе человека, в 30-40 раз превышающую его концентрацию в плазме. В физиологических условиях НЙС активируется ТТГ, а в патологических (при болезни Грейвса) - антителами, стимулирующими рецептор ТТГ. НЙС синтезируется также в слюнных, желудочных и молочных железах. Поэтому они также обладают способностью концентрировать йодид. Однако его накоплению в этих железах препятствует отсутствие органификации; ТТГ не стимулирует активность НЙС в них. Большие количества йодида подавляют как активность НЙС, так и экспрессию его гена (механизм ауторегуляции метаболизма йода). Перхлорат также снижает активность НЙС, и поэтому может применяться при гипертиреозе. НЙС транспортирует в тиреоциты не только йодид, но и пертехнетат (TcO4-). Радиоактивный изотоп технеция в виде Tc99mO4- используют для сканирования щитовидной железы и оценки ее поглощающей активности.

На апикальной мембране тиреоцитов локализуется второй белковый транспортер йодида - пендрин, который переносит йодид в коллоид, где происходит синтез тиреоидных гормонов. Мутации гена пендрина, нарушающие функцию этого белка, обусловливают синдром зоба с врожденной глухотой (синдром Пендреда).

Йодирование тиреоглобулина

На границе тиреоцитов с коллоидом йодид быстро окисляется перекисью водорода; эта реакция катализируется ТПО. В результате образуется активная форма йодида, которая присоединяется к тирозильным остаткам тиреоглобулина. Необходимая для этой реакции перекись водорода образуется, по всей вероятности, под действием НАДФ-оксидазы в присутствии ионов кальция. Этот процесс также стимулируется ТТГ. ТПО способна катализировать йодирование тирозильных остатков и в других белках (например, в альбумине и фрагментах тиреоглобулина), но активные гормоны в этих белках не образуются.

Конденсация йодтирозильных остатков тиреоглобулина

ТПО катализирует и объединение йодтирозильных остатков тиреоглобулина. Предполагается, что в ходе этого внутримолекулярного процесса происходит окисление двух йодированных остатков тирозина, близость которых друг к другу обеспечивается третичной и четвертичной структурой тиреоглобулина. Затем йодтирозины образуют промежуточный хиноловый эфир, расщепление которого приводит к появлению йодтиронинов. При конденсации двух остатков дийодтирозина (ДИТ) в молекуле тиреоглобулина образуется Т4, а при конденсации ДИТ с остатком монойодтирозина (МИТ) — Т3.

Производные тиомочевины - пропилтиоурацил (ПТУ), тиамазол и карбимазол - являются конкурентными ингибиторами ТПО. Из-за своей способности блокировать синтез тиреоидных гормонов эти средства используются при лечении гипертиреоза.

Протеолиз тиреоглобулина и секреция тиреоидных гормонов

Пузырьки, образующиеся на апикальной мембране тиреоцитов, поглощают тиреоглобулин и путем пиноцитоза проникают в клетки. С ними сливаются лизосомы, содержащие протео-литические ферменты. Протеолиз тиреоглобулина приводит к освобождению Т4 и Т3, равно как и неактивных йодированных тирозинов, пептидов и отдельных аминокислот. Биологические активные Т4 и Т3 выделяются в кровь; ДИТ и МИТ дейо-дируются, и их йодид сохраняется в железе. ТТГ стимулирует, а избыток йодида и литий ингибируют секрецию тиреоидных гормонов. В норме из тиреоцитов в кровь выделяется и небольшое количество тиреоглобулина. При ряде заболеваний щитовидной железы (тиреоидите, узловом зобе и болезни Грейвса) его концентрация в сыворотке значительно возрастает.

Дейодирование в тиреоцитах

МИТ и ДИТ, образующиеся в процессе синтеза тиреоидных гормонов и протеолиза тиреоглобулина, подвергаются действию внутритиреоидной дейодиназы (НАДФ-зависимого флавопротеина). Этот фермент присутствует в митохондриях и микросомах и катализирует дейодирование только МИТ и ДИТ, но не Т4 или Т3. Основная часть освобождающегося йодида повторно используется в синтезе тиреоидных гормонов, но небольшие его количества все же просачиваются из тиреоцитов в кровь.

В щитовидной железе присутствует также 5"-дейодиназа, которая превращает Т4 в Т3. При недостаточности йодида и гипертиреозе этот фермент активируется, что приводит к увеличению количества секретируемого Т3 и тем самым к усилению метаболических эффектов тиреоидных гормонов.

Нарушения синтеза и секреции тиреоидных гормонов

Дефицит йода в диете и наследственные дефекты

Причиной недостаточной продукции тиреоидных гормонов может быть как дефицит йода в диете, так и дефекты генов, кодирующих белки, которые участвуют в биосинтезе Т4 и Т3 (дисгормоногенез). При малом содержании йода и общем снижении продукции тиреоидных гормонов увеличивается отношение МИТ/ДИТ в тиреоглобулине и возрастает доля секретируемого железой Т3. Гипоталамо-гипофизарная система реагирует на дефицит тиреоидных гормонов повышенной секрецией ТТГ. Это приводит к увеличению размеров щитовидной железы (зобу), что может компенсировать дефицит гормонов. Однако если такая компенсация недостаточна, то развивается гипотиреоз. У новорожденных и маленьких детей дефицит тиреоидных гормонов может приводить к необратимым нарушениям нервной и других систем (кретинизм). Конкретные наследственные дефекты синтеза Т4 и Т3 подробнее рассматриваются в разделе, посвященном нетоксическому зобу.

Влияние избытка йода на биосинтез тиреоидных гормонов

Хотя йодид необходим для образования тиреоидных гормонов, его избыток угнетает три основных этапа их продукции: захват йодида, йодирование тиреоглобулина (эффект Вольфа-Чайкова) и секрецию. Однако нормальная щитовидная железа через 10-14 суток «ускользает» из-под ингибиторных влияний избытка йодида. Ауторегуляторные эффекты йодида предохраняют функцию щитовидной железы от последствий кратковременных колебаний потребления йода.

Влияние избытка йодида имеет важное клиническое значение, так как может лежать в основе индуцированных йодом нарушений функции щитовидной железы, а также позволяет использовать йодид для лечения ряда нарушений ее функции. При аутоиммунном тиреоидите или некоторых формах наследственного дисгормоногенеза щитовидная железа теряет способность «ускользать» из-под ингибирующего действия йодида, и избыток последнего может вызывать гипотиреоз. И наоборот, у некоторых больных с многоузловым зобом, латентной болезнью Грейвса, а иногда и в отсутствие исходных нарушений функции щитовидной железы, нагрузка йодидом может вызывать гипертиреоз (феномен йод-Базедов).

Транспорт тиреоидных гормонов

Оба гормона циркулируют в крови в связанном с белками плазмы виде. Несвязанными, или свободными, остаются только,0,04% Т4 и 0,4% Т3, и именно эти их количества могут проникать в клетки-мишени. Тремя главными транспортными белками для этих гормонов являются: тироксин-связывающий глобулин (ТСГ), транстиретин (ранее называвшийся тироксин-связывающим преальбумином - ТСПА) и альбумин. Связывание с белками плазмы обеспечивает доставку плохо растворимых в воде йодтиронинов к тканям, их равномерное распределение по тканям-мишеням, а также их высокий уровень в крови со стабильным 7-суточным t1/2 в плазме.

Тироксин-связывающий глобулин

ТСГ синтезируется в печени и представляет собой гликопротеин семейства серпинов (ингибиторов сериновых протеаз). Он состоит из одной полипептидной цепи (54 кДа), к которой прикреплены четыре углеводные цепи, в норме содержащие примерно 10 остатков сиаловой кислоты. Каждая молекула ТСГ содержит один сайт связывания Т4 или Т3. Концентрация ТСГ в сыворотке составляет 15-30 мкг/мл (280-560 нмоль/л). Этот белок обладает высоким сродством к Т4 и Т3 и связывает около 70% присутствующих в крови тиреоидных гормонов.

Связывание тиреоидных гормонов с ТСГ нарушается при врожденных дефектах его синтеза, при некоторых физиологических и патологических состояниях, а также под влиянием ряда лекарственных средств. Недостаточность ТСГ встречается с частотой 1:5000, причем для некоторых этнических и расовых групп характерны специфические варианты этой патологии. Наследуясь как сцепленный с Х-хромосомой рецессивный признак, недостаточность ТСГ поэтому гораздо чаще наблюдается у лиц мужского пола. Несмотря на низкие уровни общих Т4 и Т3, содержание свободных тиреоидных гормонов остается нормальным, что и определяет эутиреоидное состояние носителей данного дефекта. Врожденная недостаточность ТСГ часто ассоциируется с врожденной недостаточностью кортикостероид-связывающего глобулина. В редких случаях врожденного избытка ТСГ общий уровень тиреоидных гормонов в крови повышен, но концентрации свободных Т4 и Т3 опять-таки остаются нормальными, а состояние носителей дефекта - эутиреоидным. Беременность, эстроген-секретирующие опухоли и эстрогенная терапия сопровождаются повышением содержания сиаловой кислоты в молекуле ТСГ, что замедляет его метаболический клиренс и обусловливает повышенный уровень в сыворотке. При большинстве системных заболеваний уровень ТСГ снижается; расщепление лейкоцитарными протеазами уменьшает и сродство этого белка к тиреоидным гормонам. И то и другое приводит к снижению общей концентрации тиреоидных гормонов при тяжелых заболеваниях. Одни вещества (андрогены, глюкокортикоиды, даназол, L-аспарагиназа) снижают концентрацию ТСГ в плазме, тогда как другие (эстрогены, 5-фторурацил) повышают ее. Некоторые из них [салицилаты, высокие дозы фенитоина, фенилбу-тазон и фуросемид (при внутривенном введении)], взаимодействуя с ТСГ, вытесняют Т4 и Т3 из связи с этим белком. В таких условиях гипоталамо-гипофизарная система сохраняет концентрацию свободных гормонов в нормальных пределах за счет снижения их общего содержания в сыворотке. Повышение уровня свободных жирных кислот под влиянием гепарина (стимулирующего липопротеинлипазу) также приводит к вытеснению тиреоидных гормонов из связи с ТСГ. In vivo это может снижать общий уровень тиреоидных гормонов в крови, но in vitro (например, при отборе крови через заполненную гепарином канюлю) содержание свободных Т4 и Т3 повышается.

Транстиретин (тироксин-связывающий преальбумин)

Транстиретин, глобулярный полипептид с молекулярной массой 55 кДа, состоит из четырех одинаковых субъединиц, каждая из которых насчитывает 127 аминокислотных остатков. Он связывает 10% присутствующего в крови Т4. Его сродство к Т4 на порядок выше, чем к Т3. Комплексы тиреоидных гормонов с транстиретином быстро диссоциируют, и поэтому транстиретин служит источником легко доступного Т4. Иногда имеет место наследственное повышение сродства этого белка к Т4. В таких случаях уровень общего Т4 повышен, но концентрация свободного Т4 остается нормальной. Эутиреоидная гипертироксинемия наблюдается также при эктопической продукции транстиретина у больных с опухолями поджелудочной железы и печени.

Альбумин

Альбумин связывает Т4 и Т3 с меньшим сродством, чем ТСГ или транстиретин, но в силу его высокой концентрации в плазме с ним связано целых 15% тиреоидных гормонов, присутствующих в крови. Быстрая диссоциация комплексов Т4 и Т3 с альбумином делает этот белок основным источником свободных гормонов для тканей. Гипоальбуминемия, характерная для нефроза или цирроза печени, сопровождается снижением уровня общих Т4 и Т3, но содержание свободных гормонов остается нормальным.

При семейной дисальбуминемической гипертироксинемии (аутосомно-доминантном дефекте) 25% альбумина обладают повышенным сродством к Т4. Это приводит к повышению уровня общего Т4 в сыворотке при сохранении нормальной концентрации свободного гормона и эутиреоза. Сродство альбумина к Т3 в большинстве таких случаев не меняется. Варианты альбумина не связывают аналоги тироксина, используемые во многих иммунологических системах определения свободного Т4 (свТ4); поэтому при обследовании носителей соответствующих дефектов можно получить ложно завышенные показатели уровня свободного гормона.

Метаболизм тиреоидных гормонов

В норме щитовидная железа секретирует в сутки примерно 100 нмоль Т4 и всего 5 нмоль Т3; суточная секреция биологически неактивного реверсивного Т3 (рТ3) составляет менее 5 нмоль. Основное количество Т3, присутствующего в плазме, образуется в результате 5"-монодейодирова-ния наружного кольца Т4 в периферических тканях, главным образом в печени, почках и скелетных мышцах. Поскольку Т3 обладает более высоким сродством к ядерным рецепторам тиреоидных гормонов, чем Т4, 5"-монодейодирова-ние последнего приводит к образованию гормона с большей метаболической активностью. С другой стороны, 5-дейодирование внутреннего кольца Т4 приводит к образованию 3,3",5"-трийодтиронина, или рТ3, лишенного метаболической активности.

Три дейодиназы, катализирующие эти реакции, различаются по своей локализации в тканях, субстратной специфичности и активности в физиологических и патологических условиях. Наибольшие количества 5"-дейодиназы 1-го типа обнаруживаются в печени и почках, а несколько меньшие - в щитовидной железе, скелетных и сердечной мышцах и других тканях. Фермент содержит селеноцистеиновую группу, которая, вероятно, и является его активным центром. Именно 5"-дейодиназа 1-го типа образует основное количество Т3 в плазме. Активность этого фермента возрастает при гипертиреозе и снижается при гипотиреозе. Производное тиомочевины ПТУ (но не тиамазол), а также антиаритмическии препарат амиодарон и йодированные рентгеноконтрастные вещества (например, натриевая соль иоподовой кислоты) ингибируют 5"-дейодиназу 1-го типа. Превращение Т4 в Т3 снижается и при недостаточности селена в диете.

Фермент 5"-дейодиназа 2-го типа экспрессируется преимущественно в головном мозге и гипофизе и обеспечивает постоянство внутриклеточного содержания Т3 в ЦНС. Фермент обладает высокой чувствительностью к уровню Т4 в плазме, и снижение этого уровня сопровождается быстрым возрастанием концентрации 5"-дейодиназы 2-го типа в головном мозге и гипофизе, что поддерживает концентрацию и действие Т3 в нейронах. И наоборот, при повышении уровня Т4 в плазме содержание 5"-дейодиназы 2-го типа снижается, и клетки мозга оказываются до некоторой степени защищенными от эффектов Т3. Таким образом, гипоталамус и гипофиз реагируют на колебания уровня Т4 в плазме изменением активности 5"-дейодиназы 2-го типа. На активность этого фермента в мозге и гипофизе влияет также рТ3. Альфа-адренергические соединения стимулируют 5"-дейодиназу 2-го типа в бурой жировой ткани, но физиологическое значение этого эффекта остается неясным. В хориальных мембранах плаценты и глиальных клетках ЦНС присутствует 5-дейодиназа 3-го типа, превращающая Т4 в рТ3, а Т3 - в 3,3"-дийодтиронин (Т2). Уровень дейодиназы 3-го типа возрастает при гипертиреозе и снижается при гипотиреозе, что предохраняет плод и головной мозг от избытка Т4.

В целом, дейодиназы выполняют троякую физиологическую функцию. Во-первых, они обеспечивают возможность местной тканевой и внутриклеточной модуляции действия тиреоидных гормонов. Во-вторых, они способствуют адаптации организма к меняющимся условиям существования, например к дефициту йода или хроническим заболеваниям. В-третьих, они регулируют действие тиреоидных гормонов на ранних стадиях развития многих позвоночных - от амфибий до человека.

Дейодированию подвергается около 80% Т4:35% превращается в Т3 и 45% - в рТ3. Остальная его часть инактивируется, соединяясь с глюкуроновой кислотой в печени и выделяясь с желчью, а также (в меньшей степени) путем соединения с серной кислотой в печени или почках. Другие метаболические реакции включают дезаминирование аланиновой боковой цепи (в результате чего образуются производные тироуксусной кислоты с низкой биологической активностью), декарбоксилирование или расщепление эфирной связи с образованием неактивных соединений.

В результате всех этих метаболических превращений ежесуточно теряется примерно 10% общего количества (около 1000 нмоль) Т4, содержащегося вне щитовидной железы, и его t1/2 в плазме составляет 7 суток. Т3 связывается с белками плазмы с меньшим сродством, и поэтому его кругооборот происходит более быстро (t1/2 в плазме - 1 сутки). Общее количество рТ3 в организме почти не отличается от такового Т3, но обновляется еще быстрее (t1/2 в плазме всего 0,2 суток).

Анонс статьи на тему здоровье — Исправление прикуса у ребенка все о брекет-системах

… Сроки исправления прикуса зависят от степени деформации зубных рядов, сложности патологии прикуса и ортодонтической аппаратуры, на которой будет производиться лечение. В среднем это занимает от 8 месяцев долет.

Анонс статьи на тему здоровье — Витамины в пожилом и старческом возрасте

… Учитывая витаминный и микронутриентный дефицит в котором находятся наши пожилые пациенты, не только в зимнее время года, целесообразным считается принимать витаминно-минеральные комплексы на протяжении всего года, вне зависимости от сезона. Важно помнить, что витаминно-минеральные комплексы — это не лечебные препараты, а профилактические. Поэтому пожилые люди сами могут определить наиболее приемлемые время и длительность приема: сезонно или постоянно. Например, можно проводить витаминную профилактику в течение 1 месяца, а затем делать перерыв на 10 — 15 дней. И конечно в темное время года прием витаминов не должен прекращаться.

Анонс статьи на тему здоровье — Как позаботиться о давлении весной

… Весной пробуждается природа, и мы – в том числе. Однако помимо радости смена сезона приносит и много хлопот. С переменой температур нам каждый раз приходится подстраиваться под новые условия, менять немного уход за кожей, больше внимания уделять увлажнению или утеплению, защите от ветра или жары. Но, пожалуй, тяжелее всего, встречать весну, когда организм исчерпал накопленный запас витаминов, тянется к солнцу, а тут еще как назло давление… Как быть гипертоникам и гипоникам?

Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной железы Галина Ивановна Дядя

II. Синтез, секреция, метаболизм и механизм действия тиреоидных гормонов

Щитовидная железа продуцирует ряд гормонов. Рассмотрим основные из них:

1) Т3– трийодтиронин;

2) Т4 – тироксин.

Гормон Т4 впервые был получен в 1915 г., а гормон Т3 – только в 1952 г. Трийодтиронин более активен.

Исходными продуктами биосинтеза тиреоидных гормонов служат аминокислота тирозин и йод. В норме человек усваивает 120–140 мкг йода в сутки. Йод поступает в организм в основном через желудочно-кишечный тракт с пищей и водой в виде йодидов и органических соединений. Было обнаружено, что с пищевыми продуктами растительного происхождения человек получает 58,3 %, с мясом – 33,3 %, с водой – 4,2 % и с воздухом – 4,2 % йода. В процессе пищеварения и всасывания вне зависимости от формы поступления (органический или неорганический) йод поступает в кровь в виде неорганического йодида. Кроме того, йодид образуется в процессе обмена тиреоидных гормонов в тканях организма. Йодид из крови захватывается клетками фолликулов щитовидной железы, а также слюнными железами и железами желудка. Однако йодид, захваченный слюнными железами и железами желудка, выделяется в неизменном виде с секретом этих желез в желудочно-кишечный тракт, откуда вновь всасывается в кровь. Экскреция (выведение) йода в основном происходит через почки.

В сыворотке крови йод определяется в виде неорганического йодида и в комплексе с белками. Если количество неорганического йода зависит от поступления его с пищей, то содержание йода, связанного с белками, относительно постоянно и является показателем активности щитовидной железы. В процессе образования и секреции тиреоидных гормонов выделяют последовательные этапы: захват йода, его органификацию, конденсацию и высвобождение тиреоидных гормонов.

Поступление и концентрирование неорганического йодида усиливаются под влиянием ТТГ (тиреотропного гормона гипофиза), а тормозятся ингибиторами аэробного дыхания, окислительного фосфорилирования и некоторыми другими веществами. Вещества, тормозящие биосинтез тиреоидных гормонов, равноценны йодидам по величине зарядов ионов и, являясь конкурентами в процессах биосинтеза, тормозят их накопление. Кроме экзогенных, на биосинтез могут воздействовать внутренние факторы: нарушения в системе транспорта йодидов, изменения структуры белков. И Т4, и Т3 вырабатываются щитовидной железой в виде L-трийодтиронина и L-тироксина – наиболее активных изомеров. Образовавшиеся гормоны щитовидной железы сохраняются в составе тиреоглобулина в коллоиде фолликулов в качестве резервной формы, поступая по мере физиологической потребности в кровь.

Все этапы внутритиреоидного обмена, в том числе последняя фаза биосинтеза – секреция гормонов, контролируются содержанием тиреотропного гормона гипофиза (ТТГ) в плазме крови. Часть Т4 в щитовидной железе дейодируется в Т3.

Щитовидная железа – единственная эндокринная железа, имеющая в запасе большое количество гормонов. В норме запас покрывает потребности организма приблизительно в течение 2 месяцев. Это можно рассматривать как фактор приспособления к неодинаковому количеству йода в пище. Нормальная щитовидная железа продуцирует в среднем 80 % Т4 (тироксина) и 20 % Т3 (трийодтиронина).

Поступая в кровь, большая часть тиреоидных гормонов связывается с транспортирующими белками, основным из которых в плазме крови является тироксинсвязывающий глобулин (ТСГ).

Лишь 0,5 % Т4 в плазме крови не связано с белками. Физиологически активны только свободные формы тиреоидных гормонов. Связанная с белком часть гормонов играет роль депо, из которого по мере использования свободных Т4 и Т3 происходит их возмещение благодаря отщеплению от транспортного белка. Период полувыведения Т4 из крови равен приблизительно 190 ч, Т3 – 19 ч. Эта разница в выведении и уравновешивает гормональную активность Т3 и Т4.

Наиболее важным процессом метаболизма тиреоидных гормонов является дейодирование, которое происходит в периферических тканях. Дейодиназы (ферменты, дейодирующие тиреоидные гормоны) есть в печени, почках, мышцах, мозге. Считают, что только 10–15 % циркулирующего в крови здорового человека Т3 секретировано щитовидной железой, тогда как 85–90 % представляют собой результат превращения Т4 в периферических тканях путем дейодирования. Печени и почкам принадлежит особо важная роль: в них происходят дейодирование и дальнейшая деградация тирозинов.

Главным фактором регуляции функции щитовидной железы является ТТГ (тиреотропный гормон), который вырабатывается тиротрофами передней доли гипофиза. Тиреотропный гормон является белковым гормоном. Структура его еще не установлена. Тиреотропный гормон стимулирует все этапы гормоногенеза в щитовидной железе, секрецию ее гормонов, а также рост и размножение тиреоцитов. Секрецию самого тиреотропного гормона контролируют два основных фактора: эффект тиреоидных гормонов по механизму обратной связи и стимулы, опосредуемые центральной нервной системой. По законам обратной связи концентрация Т4 (тироксина) и Т3 (трийодтиронина) в крови контролирует уровень тиреотропного гормона. Содержание тиреоидных гормонов (Т3 и Т4) и ТТГ изменяется в противоположном направлении: нехватка тиреоидных гормонов усиливает секрецию ТТГ, а избыток – уменьшает. Другими словами, тиреоидные гормоны (тироксин и трийодтиронин) тормозят синтез и высвобождение тиреотропного гормона. Отечественные авторы показали роль функционального состояния ЦНС (коры головного мозга) в секреции гормонов щитовидной железы.

Действие желез внутренней секреции нельзя рассматривать обособленно, без учета воздействия других эндокринных органов. Так, например, кортизол (гормон надпочечников) понижает синтез и секрецию тиреоидных гормонов, уменьшает захват радиоактивного йода щитовидной железой, что объясняют как прямым действием на паренхиму железы, так и снижением тиреотропной функции гипофиза в этих условиях. Эстрогены (гормоны яичников) не изменяют исходного уровня тиреотропного гормона, но повышают его реакцию на тирео-рилизинггормон (ТРГ). Предполагают, что в основе тормозящего эффекта гормона роста на секрецию ТТГ лежит стимуляция секреции соматостатина, который и угнетает реакцию ТТГ на ТРГ. Адреналин и норадреналин в зависимости от условий могут и усиливать, и подавлять функцию щитовидной железы. Введение экзогенных тиреоидных гормонов угнетает ее.

Из книги Заболевания щитовидной железы: лечение и профилактика автора Леонид Рудницкий

Биологическое действие тиреоидных гормонов Нормально функционирующая щитовидная железа необходима человеку, так как с ее помощью обеспечиваются жизненно важные функции организма. Ее гормоны необходимы для нормальной деятельности большинства, если не всех его органов

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

2. Свойства гормонов, механизм их действия Выделяют три основных свойства гормонов:1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);2) строгую специфичность действия (ответные реакции на действие

автора Марина Геннадиевна Дрангой

3. Синтез, секреция и выделение гормонов из организма Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках. Генетический

Из книги Анализы. Полный справочник автора Михаил Борисович Ингерлейб

26. Свойства гормонов, механизм их действия в организме Выделяют три основных свойства гормонов:1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);2) строгую специфичность действия;3) высокую

Из книги Минимум жира, максимум мышц! автора Макс Лис

27. Синтез, секреция и выделение гормонов из организма Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках.Генетический

Из книги Как перестать храпеть и дать спать другим автора Юлия Сергеевна Попова

Тест поглощения тиреоидных гормонов Тест поглощения тиреоидных гормонов – метод оценки функции щитовидной железы.Показания к назначению анализа: диагностика гипотиреоза и гипертиреоза. Тест чаще назначается одновременно с определением общего тироксина (см.).Норма:

Из книги Современные хирургические инструменты автора Геннадий Михайлович Семенов

Синтез стероидных гормонов Выключателем, который ответственен за синтез стероидных гормонов, является клеточный регулятор цАМФ. Он и его связанный фермент (киназа белка А) активизируют синтез стероидных гормонов. Эти стимулирующие пептидные гормоны посылают половым

Из книги Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной железы автора Галина Ивановна Дядя

Механизм действия гормонов Гормоны были открыты учеными в 1902 году. Согласно определению большинства специалистов, это органические химические соединения, вырабатываемые определенными железами и клетками и оказывающие сложное и многогранное воздействие на

Из книги Болезни щитовидной железы. Лечение без ошибок автора Ирина Витальевна Милюкова

7.1. Механизм действия Плазменный поток, предназначенный для рассечения тканей, образуется при пропускании через высокоскоростную струю инертного газа электрического тока большой силы:– плазмообразующий газ – аргон;– ток разряда – 10–30 А;– напряжение разряда – 25–35

Из книги Нормальная физиология автора Николай Александрович Агаджанян

III. Физиологические эффекты тиреоидных гормонов Физиологическое действие тиреоидных гормонов разнообразно. Они влияют почти на все процессы обмена и функцию многих органов и тканей. У человека тиреоидные гормоны особенно важны для развития центральной нервной системы

Из книги Похудеть может каждый автора Геннадий Михайлович Кибардин

IV. Заболевания щитовидной железы, при которых нарушается секреция гормонов 1. Диффузный токсический зоб (ДТЗ)Это заболевание аутоиммунной природы, в основе которого лежит гиперфункция щитовидной железы и повышение продукции тиреоидных гормонов. При этом, как правило,

Из книги автора

III. Физиологические эффекты гормонов коры надпочечников в организме и механизм их действия Продуцируемые надпочечниками соединения оказывают влияние на многие процессы обмена веществ и функции организма.Гормоны коры надпочечников активно влияют на обменные процессы

Из книги автора

IV. Физиологические эффекты гормонов мозгового слоя надпочечников – катехоламинов и механизм их действия Эффекты катехоламинов начинаются с взаимодействия со специфическими рецепторами клеток-«мишеней». Если рецепторы тиреоидных и стероидных гормонов локализуются

Из книги автора

Препараты тиреоидных гормонов Препараты тиреоидных гормонов - гормонов щитовидной железы - применяются прежде всего в качестве заместительной терапии при гипотиреозе. Кроме того, их назначают для супрессивной (подавляющей) терапии при диффузном нетоксическом зобе и

Из книги автора

Механизмы действия гормонов. Существуют два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки.В первом случае рецепторы расположены на

Из книги автора

Механизм действия гормонов Протеиновые и стероидные гормоны отличаются друг от друга не только по химической структуре, но и по механизму действия.Стероидные гормоны и производные аминокислот (тироксин) действуют внутриклеточно. Они распознаются специфическими

Видите сферические фолликулы (на срезе они имеют вид круга)? Именно в этих тиреоидных фолликулярных А-клетках происходит синтез йодосодержащих гормонов трийодтиронина (T 3) и тироксина (T 4).

Фолликулярные клетки создают сферу, внутри которой находится коллоид, состоящий из белка тиреоглобулина. Этот белок является основой для синтеза трийодтиронина (T 3) и тироксина (T 4). Весь процесс синтеза регулируется гипофизом — тиреотропным гормоном (ТТГ). Клетки фолликул обращены ворсинками к коллоиду и проникают в него. Как только из гипофиза поступает команда на синтез тиреоидных гормонов — «завод» в фолликуле начинает работать.

Где происходит синтез тиреокальцитонина

Норма концентрации гормонов щитовидной железы

Синтез гормонов эндокринной железы зависит от поступления в организм йода. Необходимо поступление 1 мг йода в виде йодидов на протяжении недели, что составляет суточную дозу 150-200 микрограммов йода для нормальной работы щитовидной железы.

Всасывание происходит в кишечнике. Йодиды попадают в кровь и, омывая фолликулы, поступают в щитовидную железу, где их включают в синтез гормонов. Происходит этот процесс под контролем гипофиза.

Предлагаю посмотреть нормальные показатели гормонов щитовидной железы в таблице:

Функция щитовидной железы в организме человека

1. Регуляция энергетического обмена

Именно эта железа внутренней секреции отвечает за наше состояние — энергетику и эмоции. В зависимости от избытка(гипертиреоз) или нехватки (гипотиреоз) гормонов щитовидной железы, у нас наблюдается гиперактивность или, наоборот, состояние «нестояния»:
1 мг тироксина провоцирует возрастание расхода энергии на 1000 ккал/сутки.
Тироксин усиливает потребление глюкозы. Расщепляет в печени гликоген. Идёт выброс энергии.
Тиреоидные гормоны отвечают за теплоотдачу тела, терморегуляцию организма (переносимость жары или холода),

2. Регуляция жизненного тонуса и эмоциональной сферы

Гипертиреоз грозит нам истериками, гипотиреоз — депрессией. Если у вас часто наблюдаются истерика или склонность к депрессиям — обратитесь к эндокринологу.
Более подробно отклонение функций щитовидной железы описано в статье . Тироксин увеличивает потребление организмом адреналина и у вас пробуждается жизнь. При его нехватке — жизненный тонус снижается, наступает упадок сил и неверие в себя.

3. Регуляция жирового обмена

Основный источник энергии мы получаем от расщепления жиров. Как результат липолиза, освобождается большое количество АТФ, необходимое для получения энергии в организме. При нормальном уровне гормонов человек не толстеет и не худеет, у него вес в норме. Поэтому тироксин можно назвать гормоном стройности.

4. Регуляция роста и развития костной ткани, солевой обмен

Тиреокальцитонин отвечает за то, насколько усвоится организмом кальций. При нехватке тиреокальцитонина кальций не усваивается и развивается остеопороз. Кальций необходим для проведения нервных импульсов мышечными клетками. Прочность нашего скелета напрямую зависит от концентрации тиреокальцитонина. Он же отвечает за утилизацию и вывод «лишнего» кальция, что предотвращает отложение солей.
Трийодтиронин участвует в регуляции синтеза гормона роста, который продуцирует гипофиз. Его нехватка отражается на росте, вплоть до его остановки.

5. Регуляция образования эритроцитов и работа сердечно-сосудистой системы

Гормоны описываемой железы усиливают синтез в костном мозге красных кровяных телец, что защищает наш организм от анемии.
Также они участвуют в транспортировке необходимых питательных веществ к миокарду, снабжая его необходимыми аминокислотами, кальцием и глюкозой. Это защищает главную сердечную мышцу от преждевременного износа, вовремя обеспечивая её строительными и энергетическими материалами.

6. Регуляция баланса половых гормонов в организме

При нормальной функции щитовидки уровень половых гормонов у женщин находится в балансе. При повышенной (гипертиреоз) функции — увеличивается количество эстрогенов в организме, при пониженной (гипотиреоз) — увеличивается концентрация прогестерона.

Тиреоидные гормоны необходимы для нормального всасывания животного холестерина в кишечнике и синтез собственного холестерина в печени. Холестерин — главный материал для образования стероидных гормонов. Для синтеза половых гормонов необходимы стероиды. Отсюда вывод: при недостатке в организме Т3 и Т4 будет не хватать и материала для образования половых гормонов.

Любой дисбаланс половых гормонов приводит к развитию эндометриоза, мастопатии, фибромиом, нарушения менструального цикла вплоть до его прекращения, бесплодия, длительной послеродовой депрессии (нехватка йода в процессе вынашивания плода).

7. Регуляция работы мозга, интеллектуального развития

Гормоны тироксина и трийодтиронина необходимы для активной работы мозга. Крайний случай их нехватки — развитие кретинизма. Особенно это касается развития плода в утробе матери в период формирования нервной системы и головного мозга.

Немного полезного видео

Производятся в щитовидной железе (ЩЗ). Тироксин и трийодтиронин - это два основных гормона этого органа, в составе которых присутствует атом йода. Эти гормоны вырабатываются клетками фолликулярного эпителия.

Роль тиреоидных гормонов

Тироксин и трийодтиронин синтезируются на основе тирозина (альфа-аминокислота) и имеют огромное значение для нормального развития всего организма.

  • Поддерживают работу дыхательного центра.
  • С их участием производится контроль образования тепла организмом.
  • Влияют на кислородный обмен и увеличивают потребность тканей в кислороде.
  • Влияют на силу сердечных сокращений (ионотропный эффект).
  • Регулируют частоту сокращений сердца (хронотропный эффект).
  • За счет гормонов щитовидной железы увеличивается количество b-адренергических рецепторов в скелетных и сердечной мышцах, а также расположенных в жировой ткани и лимфоцитах.
  • Активируют моторику всего желудочно-кишечного тракта.
  • Под их влиянием происходит синтез различных структурных белков и дифференцировка тканей.
  • Стимулируют развитие и рост всего организма.
  • Стимулируют работу ЦНС и ускоряют мыслительные ассоциации.
  • Регулируют глюкозу в крови и увеличивают захват и утилизацию ее клетками, тем самым активируют процесс гликолиза.
  • Влияют на распад жировой ткани (липолиз) и задерживают ее формирование и отложение.

Нарушение секреции тиреоидных гормонов в человеческом организме может привести к задержке психического и физического развития.

Синтез гормонов ЩЗ

Основным белком ЩЗ является тиреоглобулин. Он служит в качестве матрицы для образования гормонов, вырабатываемых железой. Тироксин и трийодтиронин синтезируются на основе белка тиреоглобулина. Этот белок содержит в своем составе более 5 тыс. аминокислотных остатков и всего 18 из них йодированы. Тироксин синтезируется при участии только от 2 до 4 аминокислотных остатков. Кроме тиреоглобулина, для выработки гормонов ЩЗ принимает участие и холестерин. Таким образом, тироксин и трийодтиронин синтезируются на основе холестерина, как и стероидные гормоны. Щитовидной железой гормона T4 производится в 10 раз больше, чем T3.

Трийодтиронин гормон (T3) формируется в результате соединения молекул ди- и монойодтирозина, которые входят в состав белка тиреоглобулина.

Как гормоны ЩЗ поступают к тканям?

Гормоны ЩЗ связываются белками плазмы крови и в таком виде доставляются до тканей и органов. Существуют три основных белка крови, которые способны связывать гормоны T3 и T4:

  1. ТСГ - тироксинсвязывающий глобулин.
  2. ТСПА - тироксинсвязывающий преальбумин.
  3. Альбумин.

На уровень тироксина и трийодтиронина влияют секреторная деятельность ЩЗ и связывающая способность сыворотки крови.

Контроль синтеза Т3 и Т4 осуществляется гормоном гипофиза В свою очередь, синтез ТТГ осуществляется под влиянием ТРГ (тиреотропин-рилизинг гормон).

Трийодтиронин свободный (fT3)

Процентное соотношение fT3 составляет всего лишь 0,25% от общего содержания Т3 в крови. Как мы уже выяснили, Т3 в крови находится гораздо меньше, чем Т4, но, несмотря на это, свободная его форма всего в два раза меньше свободной формы Т4.

Именно свободная форма гормонов ЩЗ обуславливает их биологическую активность. Трийодтиронин (гормон) намного активнее тироксина. Именно поэтому свободный уровень его характеризует общее метаболистическое действие тиреоидных гормонов.

Т4 биологически малоактивный. Но при необходимости он может под воздействием фермента селен-зависимой монодейодиназы преобразовываться в более активный Т3.

Гормон тироксин функции в организме выполняет такие же важные, как и трийодтиронин. А именно Т4 отвечает за выработку в печени витамина А, стимулирует белковые обменные процессы, влияет на липидный (жировой) метаболизм, регулирует уровень триглицеридов и плохого холестерина в крови, влияет на правильное формирование костной ткани, что особенно актуально в детском возрасте.

Как правильно ЩЗ?

Для того чтобы произвести исследование уровня гормонов ЩЗ, достаточно сдать на анализ кровь из вены. Это можно сделать в процедурном кабинете.

Чтобы исследование прошло наиболее достоверно и на его результаты не повлияли внешние факторы, за один месяц до сдачи крови на анализ необходимо исключить прием всех гормональных препаратов. Конечно, это должно быть согласовано с лечащим врачом. За 3-5 дней до сдачи рекомендуется исключить лекарственные средства, содержащие в составе йод.

Непосредственно перед забором крови пациент не должен проходить никаких рентгенологических исследований. Накануне сдачи крови не рекомендованы высокие физические нагрузки и стрессовые ситуации (спортивные соревнования, сдача экзаменов и т. д.). Перед тем как зайти в кабинет и сдать анализ, пациенту рекомендуется посидеть и отдохнуть в течение 15-30 минут.

Нормальные значения гормонов ЩЗ

Мы выяснили, какую роль в организме играют тироксин и трийодтиронин, синтезируются на основе каких компонентов, какие вещества отвечают за их связывание в сыворотке крови, как правильно сдать анализ на эти гормоны. Теперь рассмотрим их нормальные значения и при каких заболеваниях они могут повышаться или понижаться. Нормы этих гормонов приведены в таблице, расположенной ниже:

При каких заболеваниях повышается fT3?

Трийодтиронин свободный может увеличиваться при следующих заболеваниях:

  • Гипертиреоз первичный или вторичный.
  • Т3 токсикоз изолированный.
  • Тиреоидит.
  • Гипотиреоз Т4-резистентный.
  • Хориокарцинома.
  • Синдром резистентности к гормонам ЩЗ.
  • Понижение концентрации тироксинсвязывающего глобулина.
  • Хронические болезни печени.
  • При гемодиализе.
  • При нефротическом синдроме.
  • После терапии препаратам радиоактивного йода.

В каких случаях происходит снижение fT3?

Понижение fT3 в крови может происходит в следующих ситуациях:

  • Гипотиреоз первичный, вторичный или третичный.
  • Нетиреоидная патология тяжелой формы, включая психические и соматические заболевания (инсульт, инфаркт и т. д.).
  • Длительное голодание или диета с низким употреблением в пищу белка.
  • В период восстановления после тяжелых патологий и операций.
  • При первичной некомпенсированной надпочечной недостаточности.
  • У женщин при регулярных тяжелых физических нагрузках.
  • В (уровень fT3 в период беременности неуклонно снижается начиная с первого триместра и к концу третьего становится наиболее выраженным).
  • При приеме следующих лекарственных препаратов: амиодарона, андрогенов, пропранолола, салицилатов, рентгеноконтрастных иодсодержащий средств.

Кроме того, возможны сезонные колебания fT3. Максимум приходится на временной промежуток с сентября по февраль, а минимум на летние месяцы.

Симптомы гипотиреоза

Гипотиреоз - это недостаточный синтез гормонов ЩЗ. В этом случае могут наблюдаться следующие симптомы:

  • Вялость, быстрая утомляемость и сонливость.
  • Появление избыточного веса, который не удается регулировать за счет физической нагрузки и диет.
  • Постоянная депрессия.
  • Может наблюдаться снижение температуры тела до 35,6 градуса.
  • Зуд кожных покровов, их сухость и отечность.
  • Выпадение волос и перхоть, которая не проходит даже после использования лечебных шампуней.
  • Снижение (брадикардия).
  • Пониженное артериальное давление.
  • Снижение памяти и реакции.
  • Регулярные запоры.
  • У женщин может спровоцировать нарушение менструального цикла и бесплодие.

Симптомы гипертиреоза

Гипертиреоз - это избыток синтеза гормонов ЩЗ. При этом наблюдается следующая симптоматика:

  • Повышенный аппетит и при этом снижение веса.
  • Общая слабость, на фоне которой может наблюдаться вспышка возбуждения.
  • Дряблость и сухость кожи.
  • Учащенное сердцебиение и повышение артериального давления.
  • Повышение температуры тела до 37,5 градуса.
  • Нарушение менструального цикла у женщин и бесплодие.
  • В тяжелых случаях заметное увеличение ЩЗ и пучеглазие.

Профилактика заболеваний ЩЗ

Щитовидная железа и ее гормоны выполняют важнейшие функции для организма, поэтому необходимо контролировать состояние этого органа. Это делается на ежегодных профилактических осмотрах. При необходимости врач даст направление на УЗИ и анализы гормонов ЩЗ.

Для предупреждения заболеваний ЩЗ и недостатка гормонов этого органа необходимо включать в свой рацион продукты с высоким содержанием йода. К ним относятся практически все морепродукты (тунец, камбала, лосось, креветки, фрукты (хурма, бананы, апельсины), овощи (лук, чеснок, щавель, баклажаны). Соблюдая простые рекомендации, можно надолго сохранить здоровье щитовидной железы и всего организма в целом.

В основе структуры тиреоидных гормонов лежит тирониновое ядро, которое состоит из двух конденсированных молекул L-тирозина. Химическая природа гормонов фолликулярной части щитовидной железы выяснена в деталях сравнительно давно. Важнейшая структурная характеристика гормонально-активных производных тиронина - наличие в их молекуле 3 или 4 атомов йода. Таковы трийодтиронин (3,5,3`-трийодтиронин, Т 3) и тироксин (3,5,3`,5`-тетрайодтиронин, Т 4) - гормоны фолликулярных клеток щитовидной железы позвоночных, осуществляющие регуляцию энергообмена, синтеза белка и развития организма .

Рис. 3 Структура гормонов щитовидной железы (слева направо): тиронин; тироксин; трийодтиронин; дийодтиронин.

Кроме того, образуются йодированные предшественники, моно- и дийодтирозины, не обладающие биологической активностью.

По химической структуре тиреоидные гормоны относятся к производным аминокислот, а именно тиронина. По физическому действию являются гормонами - исполнителями, действуя непосредственно на обменные процессы в клетках и тканях - мишенях .

Считается установленным, что все йодсодержащие гормоны, отличающиеся друг от друга содержанием йода, являются производными L-тиронина, который синтезируется в организме из аминокислоты L-тирозина.

Последовательность реакций, связанных с синтезом гормонов щитовидной железы, была расшифрована при помощи радиоактивного йода . Было показано, что введенный меченый йод прежде всего обнаруживается в молекуле монойодтирозина, затем - дийодтирозина и только потом - тироксина .

В настоящее время еще полностью не изучены ферментные системы, катализирующие промежуточные стадии синтеза этих гормонов, и природа фермента, участвующего в превращении йодидов в свободный йод, необходимый для йодирования 115 остатков тирозина в молекуле тиреоглобулина .

Синтез тиреоидных гормонов

Синтез йодида

Для нормального синтеза тиреоидных гормонов необходим адекватный захват йода, так как тиреоидные гормоны являются единственными соединениями организма, содержащими йод в своей структуре .

Йод, открытый почти 200 лет назад, относится к категории незаменимых для организма человека элементов, являясь облигатным компонентом для синтеза тиреоидных гормонов (ТГ) - тироксина (Т 4) и трийодтиронина (Т 3). В организм человека йод поступает с пищей, водой и воздухом. Суточная потребность в йоде зависит от возраста (табл. 1).

Таблица.1 Возрастные нормы, потребления йода в сутки

В регионах, расположенных около моря, содержание йода в воздухе может достигать 50 мкг в 1 м3, в морской рыбе и морепродуктах -- от 40 до 300 мкг на 100 г, меньше в продуктах животного происхождения (от 7 до 20 мкг на 100 г продукта). Наименьшее количество йода содержится в продуктах растительного происхождения. В процессе хранения и тепловой кулинарной обработки содержание йода быстро падает.

Более половины территорий Российской Федерации относятся к йоддефицитным регионам (по содержанию йода в воде и почве) с различной степенью выраженности йодного обеспечения. Кроме природной недостаточности к дефициту йода (ДИ) в организме могут привести следующие состояния:

2) генетически детерминированные тиреопатии, инфильтрация щитовидной железы при гистиоцитозах, саркоидозе;

3) повышенная потребность в йоде в подростковом возрасте, в период беременности и лактации;

4) наличие гиповитаминозов, гипо- и дисмикроэлементозов;

5) поступление йода в недоступной для всасывания форме;

6) воздействие медикаментозных препаратов и других факторов окружающей среды химической и физической природы, в том числе и радиационное воздействие .

Йодид, удаляемый из сыворотки щитовидной железой, возвращается в циркуляцию в виде йодтиронинов (тиреоидных гормонов), чей йод возвращается в основном во внеклеточную жидкости после периферического дейодирования. Пул йодированных гормонов включает находящиеся в циркулярном русле, а так же тиреоидные гормоны в тканях. Самым большим пулом обладает щитовидная железа, которая содержит 8000 мкг (рис.4).


Рис. 4.

Пул щитовидной железы характеризуется очень медленным оборотом, приблизительно 1% в сутки. На рисунке изображены нормальные пути метаболизма йода в состоянии равновесия йода. Стрелки указывают суточный переход из одного компартмента в дугой. Цифры в скобках указывают размеры пулов .