Vlastnosti logaritmov a príklady ich riešenia. Komplexný sprievodca (2019)

Vaše súkromie je pre nás dôležité. Z tohto dôvodu sme vyvinuli Zásady ochrany osobných údajov, ktoré popisujú, ako používame a uchovávame vaše informácie. Prečítajte si prosím naše zásady ochrany osobných údajov a ak máte nejaké otázky, dajte nám vedieť.

Zhromažďovanie a používanie osobných údajov

Osobné informácie sa týkajú údajov, ktoré možno použiť na identifikáciu alebo kontaktovanie konkrétnej osoby.

Kedykoľvek nás budete kontaktovať, môžete byť požiadaní o poskytnutie svojich osobných údajov.

Nasleduje niekoľko príkladov typov osobných údajov, ktoré môžeme zhromažďovať, a ako môžeme tieto informácie použiť.

Aké osobné údaje zhromažďujeme:

  • Keď odošlete žiadosť na stránke, môžeme zhromažďovať rôzne informácie vrátane vášho mena, telefónneho čísla, e-mailovej adresy atď.

Ako používame vaše osobné údaje:

  • Nami zozbierané osobné informácie nám umožňuje kontaktovať vás a informovať vás o jedinečných ponukách, akciách a iných akciách a pripravovaných akciách.
  • Z času na čas môžeme použiť vaše osobné údaje, aby sme vám mohli posielať dôležité upozornenia a oznámenia.
  • Osobné údaje môžeme použiť aj na interné účely, ako je audit, analýza údajov a rôzne štúdie na zlepšenie nami poskytovaných služieb a na poskytovanie odporúčaní týkajúcich sa našich služieb.
  • Ak sa zúčastníte žrebovania, súťaže alebo podobného stimulu, môžeme použiť informácie, ktoré nám poskytnete, na spravovanie takýchto programov.

Sprístupnenie tretím stranám

Informácie, ktoré od vás dostaneme, nezverejňujeme tretím stranám.

Výnimky:

  • V prípade potreby - v súlade so zákonom, súdneho poriadku, v súdnom konaní a/alebo na základe verejných žiadostí alebo žiadostí od vládne agentúry na území Ruskej federácie - zverejnite svoje osobné údaje. Môžeme tiež zverejniť informácie o vás, ak usúdime, že takéto zverejnenie je potrebné alebo vhodné z dôvodu bezpečnosti, presadzovania práva alebo iného verejného záujmu.
  • V prípade reorganizácie, zlúčenia alebo predaja môžeme osobné údaje, ktoré zhromažďujeme, preniesť na príslušného nástupcu tretej strany.

Ochrana osobných údajov

Prijímame opatrenia – vrátane administratívnych, technických a fyzických – na ochranu vašich osobných údajov pred stratou, krádežou a zneužitím, ako aj pred neoprávneným prístupom, zverejnením, zmenou a zničením.

Zachovanie vášho súkromia na úrovni spoločnosti

Aby sme zaistili bezpečnosť vašich osobných údajov, informujeme našich zamestnancov o postupoch ochrany osobných údajov a zabezpečenia a prísne presadzujeme postupy ochrany osobných údajov.


Ťažiskom tohto článku je logaritmus. Tu uvedieme definíciu logaritmu, ukážeme akceptovaný zápis, uvedieme príklady logaritmov a porozprávame sa o prirodzených a desiatkových logaritmoch. Potom zvážte hlavné logaritmická identita.

Navigácia na stránke.

Definícia logaritmu

Koncept logaritmu vzniká pri riešení problému v istom zmysle inverznom, keď potrebujete nájsť exponent zo známej hodnoty stupňa a známeho základu.

Ale dosť preambuly, je čas odpovedať na otázku „čo je to logaritmus“? Uveďme vhodnú definíciu.

Definícia.

Logaritmus b na základ a, kde a>0 , a≠1 a b>0 je exponent, na ktorý musíte zvýšiť číslo a, aby ste dostali b.

V tejto fáze si všimneme, že hovorené slovo „logaritmus“ by malo okamžite vyvolať dve nasledujúce otázky: „aké číslo“ a „na akom základe“. Inými slovami, jednoducho neexistuje žiadny logaritmus, ale existuje iba logaritmus čísla v nejakom základe.

Hneď predstavíme logaritmický zápis: logaritmus čísla b k základu a sa zvyčajne označuje ako log a b. Logaritmus čísla b k základu e a logaritmus k základu 10 majú svoje vlastné špeciálne označenia lnb a lgb, to znamená, že nepíšu log e b , ale lnb a nie log 10 b , ale lgb .

Teraz si môžete priniesť: .
A záznamy nedávajú zmysel, pretože v prvom z nich je pod znakom logaritmu záporné číslo, v druhom - záporné číslo v základe a v treťom - záporné číslo pod znamienkom logaritmu a jednotka v základe.

Teraz si pohovorme o pravidlá čítania logaritmov. Záznam ab sa číta ako "logaritmus b na základ a". Napríklad log 2 3 je logaritmus troch k základu 2 a je to logaritmus dvoch celých čísel dvoch základných tretín druhej odmocniny z piatich. Logaritmus k základu e sa nazýva prirodzený logaritmus a zápis lnb sa číta ako "prirodzený logaritmus b". Napríklad ln7 je prirodzený logaritmus čísla sedem a budeme ho čítať ako prirodzený logaritmus čísla pí. Logaritmus na základ 10 má tiež špeciálny názov - desiatkový logaritmus a zápis lgb sa číta ako "desiatkový logaritmus b". Napríklad lg1 je desiatkový logaritmus jednej a lg2,75 je desiatkový logaritmus dvoch bodiek sedemdesiatpäť stotín.

Oplatí sa venovať osobitnú pozornosť podmienkam a>0, a≠1 a b>0, za ktorých je daná definícia logaritmu. Vysvetlíme, odkiaľ tieto obmedzenia pochádzajú. K tomu nám pomôže rovnosť tvaru s názvom , ktorá priamo vyplýva z definície logaritmu uvedenej vyššie.

Začnime s a≠1 . Keďže jedna sa rovná jednej akejkoľvek mocnine, potom rovnosť môže platiť iba pre b=1, ale log 1 1 môže byť akékoľvek reálne číslo. Aby sa predišlo tejto nejednoznačnosti, akceptuje sa a≠1.

Doložme účelnosť podmienky a>0 . S a=0 by sme podľa definície logaritmu mali rovnosť , čo je možné len s b=0 . Ale potom log 0 0 môže byť akékoľvek nenulové reálne číslo, pretože nula až akákoľvek nenulová mocnina je nula. Tejto nejednoznačnosti sa dá vyhnúť podmienkou a≠0 . A pre a<0 нам бы пришлось отказаться от рассмотрения рациональных и иррациональных значений логарифма, так как степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Поэтому и принимается условие a>0 .

Nakoniec podmienka b>0 vyplýva z nerovnosti a>0 , keďže , a hodnota stupňa s kladnou bázou a je vždy kladná.

Na záver tohto odseku hovoríme, že vyjadrená definícia logaritmu vám umožňuje okamžite uviesť hodnotu logaritmu, keď je číslo pod znakom logaritmu určitým stupňom základne. Definícia logaritmu nám skutočne umožňuje tvrdiť, že ak b=a p , potom sa logaritmus čísla b k základu a rovná p . To znamená, že log rovnosti a a p = p je pravdivý. Napríklad vieme, že 2 3 = 8 , potom log 2 8 = 3 . Viac si o tom povieme v článku.

Logaritmy, ako každé číslo, možno sčítať, odčítať a previesť všetkými možnými spôsobmi. Ale keďže logaritmy v skutočnosti nie sú bežné čísla, platia tu pravidlá, ktoré sú tzv základné vlastnosti.

Tieto pravidlá musíte poznať – bez nich nemožno vyriešiť žiadny vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakým základom: log a X a log a r. Potom ich možno sčítať a odčítať a:

  1. log a X+ denník a r= log a (X · r);
  2. log a X−log a r= log a (X : r).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel je logaritmus kvocientu. Poznámka: kľúčovým bodom je tu - rovnaké dôvody. Ak sú základy odlišné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď nie sú zohľadnené jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

denník 6 4 + denník 6 9.

Keďže základy logaritmov sú rovnaké, použijeme súčtový vzorec:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log 2 48 − log 2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log 2 48 - log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log 3 135 − log 3 5.

Opäť platí, že základy sú rovnaké, takže máme:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré sa neuvažujú samostatne. Ale po transformáciách sa ukážu celkom normálne čísla. Na základe tejto skutočnosti mnohí testovacie papiere. Áno, kontrola – na skúške sú ponúkané podobné výrazy úplne vážne (niekedy – prakticky bez zmien).

Odstránenie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak existuje stupeň v základe alebo argumente logaritmu? Potom možno exponent tohto stupňa odobrať zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké to vidieť posledné pravidlo nasleduje po prvých dvoch. Ale je lepšie si to aj tak zapamätať – v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá majú zmysel, ak sa dodrží logaritmus ODZ: a > 0, a ≠ 1, X> 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak, t.j. môžete zadať čísla pred znamienkom logaritmu do samotného logaritmu. To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log 7 49 6 .

Zbavme sa stupňa v argumente podľa prvého vzorca:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Úloha. Nájdite hodnotu výrazu:

[Titul obrázku]

Všimnite si, že menovateľ je logaritmus, ktorého základ a argument sú presné mocniny: 16 = 2 4 ; 49 = 72. Máme:

[Titul obrázku]

Myslím, že posledný príklad potrebuje objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli základ a argument stojaceho logaritmu vo forme stupňov a vybrali ukazovatele - dostali „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ a menovateľ majú rovnaké číslo: log 2 7. Keďže log 2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa stalo. Výsledkom je odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základňami. Čo ak sú základy odlišné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na novú základňu. Formulujeme ich vo forme vety:

Nechajte logaritmus logovať a X. Potom pre ľubovoľné číslo c také že c> 0 a c≠ 1, platí rovnosť:

[Titul obrázku]

Najmä ak dáme c = X, dostaneme:

[Titul obrázku]

Z druhého vzorca vyplýva, že je možné zameniť základ a argument logaritmu, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus je v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však úlohy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do nového základu. Uvažujme o niekoľkých z nich:

Úloha. Nájdite hodnotu výrazu: log 5 16 log 2 25.

Všimnite si, že argumenty oboch logaritmov sú presné exponenty. Vyberme ukazovatele: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Teraz otočme druhý logaritmus:

[Titul obrázku]

Keďže súčin sa nemení permutáciou faktorov, pokojne sme vynásobili štyri a dva a potom sme vypočítali logaritmy.

Úloha. Nájdite hodnotu výrazu: log 9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

[Titul obrázku]

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

[Titul obrázku]

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu vzorce:

V prvom prípade číslo n sa stáva exponentom argumentu. číslo n môže byť úplne čokoľvek, pretože je to len hodnota logaritmu.

Druhý vzorec je vlastne parafrázovaná definícia. Nazýva sa to základná logaritmická identita.

Vskutku, čo sa stane, ak číslo b zdvihnúť k moci tak, že b do tejto miery dáva číslo a? Správne: toto je rovnaké číslo a. Pozorne si prečítajte tento odsek ešte raz - veľa ľudí na ňom „visí“.

Rovnako ako nové základné konverzné vzorce, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite hodnotu výrazu:

[Titul obrázku]

Všimnite si, že log 25 64 = log 5 8 - práve vytiahol štvorec zo základne a argument logaritmu. Vzhľadom na pravidlá násobenia právomocí s rovnakým základom dostaneme:

[Titul obrázku]

Ak niekto nevie, toto bola skutočná úloha zo skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré je ťažké nazvať vlastnosťami – skôr ide o dôsledky z definície logaritmu. Neustále sa nachádzajú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. log a a= 1 je logaritmická jednotka. Pamätajte si raz a navždy: logaritmus na akúkoľvek základňu a z tejto základne sa rovná jednej.
  2. log a 1 = 0 je logaritmická nula. Základňa a môže byť čokoľvek, ale ak je argument jedna, logaritmus je nula! pretože a 0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Dnes budeme hovoriť o logaritmické vzorce a dať demonštráciu príklady riešenia.

Samy o sebe implikujú vzory riešení podľa základných vlastností logaritmov. Pred použitím logaritmických vzorcov na riešenie si najprv pripomenieme všetky vlastnosti:

Teraz, na základe týchto vzorcov (vlastností), ukážeme príklady riešenia logaritmov.

Príklady riešenia logaritmov na základe vzorcov.

Logaritmus kladné číslo b v základe a (označené ako log a b) je exponent, na ktorý musí byť a umocnené, aby sme dostali b, pričom b > 0, a > 0 a 1.

Podľa definície log a b = x, čo je ekvivalent a x = b, teda log a a x = x.

Logaritmy, príklady:

log 2 8 = 3, pretože 2 3 = 8

log 7 49 = 2 pretože 7 2 = 49

log 5 1/5 = -1, pretože 5-1 = 1/5

Desatinný logaritmus je obyčajný logaritmus, ktorého základňa je 10. Označuje sa ako lg.

log 10 100 = 2 pretože 102 = 100

prirodzený logaritmus- tiež obvyklý logaritmus logaritmus, ale so základom e (e \u003d 2,71828 ... - iracionálne číslo). Označované ako ln.

Je vhodné si zapamätať vzorce alebo vlastnosti logaritmov, pretože ich budeme potrebovať neskôr pri riešení logaritmov, logaritmických rovníc a nerovníc. Prepracujme každý vzorec znova s ​​príkladmi.

  • Základná logaritmická identita
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritmus súčinu sa rovná súčtu logaritmov
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Logaritmus kvocientu sa rovná rozdielu logaritmov
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Vlastnosti stupňa logaritmovateľného čísla a základu logaritmu

    Exponent logaritmického čísla log a b m = mlog a b

    Exponent základu logaritmu log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ak m = n, dostaneme log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Prechod na nový základ
    log a b = log c b / log c a,

    ak c = b, dostaneme log b b = 1

    potom log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Ako vidíte, logaritmické vzorce nie sú také zložité, ako sa zdá. Teraz, keď sme zvážili príklady riešenia logaritmov, môžeme prejsť k logaritmickým rovniciam. Príklady riešenia logaritmických rovníc podrobnejšie zvážime v článku: "". Nenechajte si ujsť!

Ak máte nejaké otázky týkajúce sa riešenia, napíšte ich do komentárov k článku.

Poznámka: rozhodol som sa získať vzdelanie v inej triede štúdiom v zahraničí ako voliteľnú možnosť.


Pokračujeme v štúdiu logaritmov. V tomto článku budeme hovoriť o výpočet logaritmov, tento proces sa nazýva logaritmus. Najprv sa budeme zaoberať výpočtom logaritmov podľa definície. Ďalej zvážte, ako sa nachádzajú hodnoty logaritmov pomocou ich vlastností. Potom sa budeme zaoberať výpočtom logaritmov prostredníctvom pôvodne zadaných hodnôt iných logaritmov. Nakoniec sa naučíme používať tabuľky logaritmov. Celá teória je vybavená príkladmi s podrobným riešením.

Navigácia na stránke.

Výpočet logaritmov podľa definície

V najjednoduchších prípadoch je možné rýchlo a jednoducho vykonať nájdenie logaritmu podľa definície. Pozrime sa bližšie na to, ako tento proces prebieha.

Jeho podstatou je reprezentovať číslo b v tvare a c , odkiaľ je podľa definície logaritmu číslo c hodnotou logaritmu. To znamená, že nájdenie logaritmu podľa definície zodpovedá nasledujúcemu reťazcu rovnosti: log a b=log a a c =c .

Výpočet logaritmu teda podľa definície vedie k nájdeniu takého čísla c, že ​​a c \u003d b a samotné číslo c je požadovaná hodnota logaritmu.

Vzhľadom na informácie z predchádzajúcich odsekov, keď je číslo pod znamienkom logaritmu dané určitým stupňom základne logaritmu, môžete okamžite uviesť, čomu sa logaritmus rovná - rovná sa exponentu. Ukážme si príklady.

Príklad.

Nájdite log 2 2 −3 a tiež vypočítajte prirodzený logaritmus e 5,3.

Riešenie.

Definícia logaritmu nám umožňuje hneď povedať, že log 2 2 −3 = −3 . V skutočnosti sa číslo pod znamienkom logaritmu rovná základu 2 až -3.

Podobne nájdeme druhý logaritmus: lne 5,3 = 5,3.

odpoveď:

log 2 2 −3 = −3 a lne 5.3 = 5.3.

Ak číslo b pod znamienkom logaritmu nie je uvedené ako mocnina základu logaritmu, potom musíte dôkladne zvážiť, či je možné prísť so zobrazením čísla b v tvare a c . Toto znázornenie je často celkom zrejmé, najmä ak sa číslo pod znamienkom logaritmu rovná základu s mocninou 1, alebo 2, alebo 3, ...

Príklad.

Vypočítajte logaritmy log 5 25 a .

Riešenie.

Je ľahké vidieť, že 25=5 2 , to vám umožňuje vypočítať prvý logaritmus: log 5 25 = log 5 5 2 = 2 .

Prejdeme k výpočtu druhého logaritmu. Číslo môže byť vyjadrené ako mocnina 7: (pozri v prípade potreby). v dôsledku toho .

Prepíšme tretí logaritmus do nasledujúceho tvaru. Teraz to môžete vidieť , z čoho sme dospeli k záveru, že . Preto podľa definície logaritmu .

Stručne povedané, riešenie by sa dalo napísať takto:

odpoveď:

log 5 25=2 , a .

Keď je dostatočne veľké prirodzené číslo pod znamienkom logaritmu, nezaškodí ho rozložiť na prvočísla. Často pomáha reprezentovať také číslo ako nejakú mocninu základu logaritmu, a preto tento logaritmus vypočítať podľa definície.

Príklad.

Nájdite hodnotu logaritmu.

Riešenie.

Niektoré vlastnosti logaritmov umožňujú okamžite určiť hodnotu logaritmov. Tieto vlastnosti zahŕňajú vlastnosť logaritmu jednotky a vlastnosť logaritmu čísla rovného základu: log 1 1=log a a 0 =0 a log a a=log a a 1 =1 . To znamená, že keď číslo 1 alebo číslo a je pod znamienkom logaritmu, rovná sa základu logaritmu, potom sú v týchto prípadoch logaritmy 0 a 1.

Príklad.

Aké sú logaritmy a lg10?

Riešenie.

Od , to vyplýva z definície logaritmu .

V druhom príklade sa číslo 10 pod znamienkom logaritmu zhoduje so základom, takže desiatkový logaritmus desiatich sa rovná jednej, teda lg10=lg10 1 =1 .

odpoveď:

A lg10=1.

Všimnite si, že výpočet logaritmov podľa definície (o ktorej sme hovorili v predchádzajúcom odseku) predpokladá použitie logaritmu rovnosti a a p =p , čo je jedna z vlastností logaritmov.

V praxi, keď je číslo pod znamienkom logaritmu a základ logaritmu ľahko reprezentované ako mocnina nejakého čísla, je veľmi vhodné použiť vzorec , čo zodpovedá jednej z vlastností logaritmov. Zvážte príklad nájdenia logaritmu, ktorý ilustruje použitie tohto vzorca.

Príklad.

Vypočítajte logaritmus .

Riešenie.

odpoveď:

.

Pri výpočte sa využívajú aj vyššie neuvedené vlastnosti logaritmov, ale o tom si povieme v nasledujúcich odstavcoch.

Hľadanie logaritmov z hľadiska iných známych logaritmov

Informácie v tomto odseku pokračujú v téme využitia vlastností logaritmov pri ich výpočte. Ale tu je hlavný rozdiel v tom, že vlastnosti logaritmov sa používajú na vyjadrenie pôvodného logaritmu pomocou iného logaritmu, ktorého hodnota je známa. Pre objasnenie si uveďme príklad. Povedzme, že vieme, že log 2 3≈1,584963 , potom môžeme nájsť napríklad log 2 6 vykonaním malej transformácie pomocou vlastností logaritmu: log 2 6 = log 2 (2 3) = log 2 2 + log 2 3≈ 1+1,584963=2,584963 .

Vo vyššie uvedenom príklade nám stačilo použiť vlastnosť logaritmu súčinu. Oveľa častejšie však musíte použiť širší arzenál vlastností logaritmov, aby ste vypočítali pôvodný logaritmus z hľadiska daných.

Príklad.

Vypočítajte logaritmus 27 k základu 60, ak je známe, že log 60 2=a a log 60 5=b .

Riešenie.

Musíme teda nájsť log 60 27 . Je ľahké vidieť, že 27=3 3 a pôvodný logaritmus možno vďaka vlastnosti logaritmu stupňa prepísať ako 3·log 60 3 .

Teraz sa pozrime, ako možno log 60 3 vyjadriť pomocou známych logaritmov. Vlastnosť logaritmu čísla rovného základu vám umožňuje zapísať logaritmus rovnosti 60 60=1 . Na druhej strane log 60 60=log60(2 2 3 5)= log 60 2 2 + log 60 3+ log 60 5= 2 log 60 2+log 60 3+log 60 5 . Touto cestou, 2 log 60 2+log 60 3+log 60 5=1. v dôsledku toho log 60 3=1−2 log 60 2−log 60 5=1−2 a−b.

Nakoniec vypočítame pôvodný logaritmus: log 60 27=3 log 60 3= 3 (1-2 a-b) = 3-6 a-3 b.

odpoveď:

log 60 27=3 (1−2 a−b)=3−6 a−3 b.

Samostatne stojí za zmienku o význame vzorca pre prechod na nový základ logaritmu formulára . Umožňuje vám prejsť od logaritmov s ľubovoľným základom k logaritmom s konkrétnym základom, ktorých hodnoty sú známe alebo je možné ich nájsť. Zvyčajne z pôvodného logaritmu podľa prechodového vzorca prechádzajú na logaritmy v jednej zo základov 2, e alebo 10, pretože pre tieto základy existujú tabuľky logaritmov, ktoré umožňujú vypočítať ich hodnoty s určitým stupňom presnosti. V ďalšej časti si ukážeme, ako sa to robí.

Logaritmické tabuľky, ich použitie

Na približný výpočet hodnôt logaritmov je možné použiť logaritmické tabuľky. Najčastejšie sa používa základná tabuľka 2 logaritmov, tabuľka prirodzených logaritmov a tabuľka desiatkových logaritmov. Pri práci v desiatkovej číselnej sústave je vhodné použiť tabuľku logaritmov so základom desať. S jeho pomocou sa naučíme nájsť hodnoty logaritmov.










Predložená tabuľka umožňuje s presnosťou na jednu desaťtisícinu nájsť hodnoty desatinných logaritmov čísel od 1,000 do 9,999 (s tromi desatinnými miestami). Princíp hľadania hodnoty logaritmu pomocou tabuľky desiatkových logaritmov bude analyzovaný v konkrétny príklad- oveľa jasnejšie. Poďme nájsť lg1,256 .

V ľavom stĺpci tabuľky desiatkových logaritmov nájdeme prvé dve číslice čísla 1,256, teda nájdeme 1,2 (toto číslo je kvôli prehľadnosti zakrúžkované modrou farbou). Tretia číslica čísla 1,256 (číslo 5) sa nachádza v prvom resp posledný riadok naľavo od dvojitej čiary (toto číslo je zakrúžkované červenou farbou). Štvrtá číslica pôvodného čísla 1,256 (číslo 6) sa nachádza v prvom alebo poslednom riadku napravo od dvojitého riadku (toto číslo je zakrúžkované zelenou farbou). Teraz nájdeme čísla v bunkách tabuľky logaritmov na priesečníku označeného riadku a označených stĺpcov (tieto čísla sú zvýraznené oranžová). Súčet označených čísel dáva požadovanú hodnotu desatinného logaritmu až po štvrté desatinné miesto, t. log1,236≈0,0969+0,0021=0,0990.

Je možné pomocou vyššie uvedenej tabuľky nájsť hodnoty desiatkových logaritmov čísel, ktoré majú viac ako tri číslice za desatinnou čiarkou, a tiež prekročiť limity od 1 do 9,999? Áno môžeš. Ukážme si, ako sa to robí na príklade.

Vypočítajme lg102,76332 . Najprv musíte napísať číslo v štandardnom tvare: 102,76332=1,0276332 10 2 . Potom by sa mantisa mala zaokrúhliť na tretie desatinné miesto, máme 1,0276332 10 2 ≈1,028 10 2, pričom pôvodný dekadický logaritmus sa približne rovná logaritmu výsledného čísla, to znamená, že vezmeme lg102.76332≈lg1.028·10 2 . Teraz použite vlastnosti logaritmu: lg1,028 10 2 = lg1,028+lg102 = lg1,028+2. Nakoniec zistíme hodnotu logaritmu lg1,028 podľa tabuľky desiatkových logaritmov lg1,028≈0,0086+0,0034=0,012. Výsledkom je, že celý proces výpočtu logaritmu vyzerá takto: lg102.76332=lg1.0276332 10 2 ≈lg1.028 10 2 = lg1,028+lg102 = lg1,028+2≈0,012+2=2,012.

Na záver stojí za zmienku, že pomocou tabuľky desiatkových logaritmov môžete vypočítať približnú hodnotu ľubovoľného logaritmu. Na to stačí použiť prechodový vzorec na prechod na desiatkové logaritmy, nájsť ich hodnoty v tabuľke a vykonať zostávajúce výpočty.

Napríklad vypočítajme log 2 3 . Podľa vzorca na prechod na nový základ logaritmu máme . Z tabuľky desiatkových logaritmov nájdeme lg3≈0,4771 a lg2≈0,3010. Touto cestou, .

Bibliografia.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. a iné Algebra a začiatky analýzy: Učebnica pre 10. – 11. ročník všeobecných vzdelávacích inštitúcií.
  • Gusev V.A., Mordkovich A.G. Matematika (príručka pre uchádzačov o štúdium na technických školách).